Observational constraints on inflationary potentials within the quantum collapse framework

The physical mechanism responsible for the emergence of primordial cosmic seeds from a perfect isotropic and homogeneous Universe has not been fully addressed in standard cosmic inflation. To handle this shortcoming, D. Sudarsky et al have developed a proposal: the self-induced collapse hypothesis....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: León, G.
Otros Autores: Pujol, A., Landau, S.J, Piccirilli, M.P
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16899caa a22013217a 4500
001 PAPER-25636
003 AR-BaUEN
005 20230518205743.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85061993087 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a León, G. 
245 1 0 |a Observational constraints on inflationary potentials within the quantum collapse framework 
260 |b Elsevier B.V.  |c 2019 
270 1 0 |m León, G.; Grupo de Astrofísica, Relatividad y Cosmología, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N 1900 La Plata, Argentina; email: gleon@fcaglp.unlp.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Ade, P.A.R., Planck 2015 results. XIII. Cosmological parameters (2015) Astron. Astrophys., 594 (2016), p. A13 
504 |a Ade, P.A.R., Planck 2015 results. XX. Constraints on inflation (2015) Astron. Astrophys., 594 (2016), p. A20 
504 |a Aghanim, N., Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters (2015) Astron. Astrophys., 594 (2016), p. A11 
504 |a Starobinsky, A.A., A new type of isotropic cosmological models without singularity (1980) Phys. Lett. B, 91, pp. 99-102 
504 |a Guth, A.H., The inflationary universe: A possible solution to the horizon and flatness problems (1981) Phys. Rev. D, 23, pp. 347-356 
504 |a Linde, A.D., A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems (1982) Phys. Lett. B, 108, pp. 389-393 
504 |a Albrecht, A., Steinhardt, P.J., Cosmology for grand unified theories with radiatively induced symmetry breaking (1982) Phys. Rev. Lett., 48, pp. 1220-1223 
504 |a Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H., Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions (1992) Phys. Rep., 215, pp. 203-333 
504 |a Mukhanov, V.F., Chibisov, G.V., Quantum fluctuation and nonsingular universe (1981) JETP Lett., 33, pp. 532-535. , (in Russian) 
504 |a Mukhanov, V.F., Chibisov, G., Nose (1982) Sov. Phys.—JETP, 56, p. 258 
504 |a Starobinsky, A.A., Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations (1982) Phys. Lett. B, 117, pp. 175-178 
504 |a Guth, A.H., Pi, S.Y., Fluctuations in the new inflationary universe (1982) Phys. Rev. Lett., 49, pp. 1110-1113 
504 |a Hawking, S.W., The development of irregularities in a single bubble inflationary universe (1982) Phys. Lett. B, 115, p. 295 
504 |a Bardeen, J.M., Steinhardt, P.J., Turner, M.S., Spontaneous creation of almost scale - free density perturbations in an inflationary universe (1983) Phys. Rev. D, 28, p. 679 
504 |a Ade, P., Joint analysis of BICEP2/Keck array and Planck data (2015) Phys. Rev. Lett., 114, p. 101301 
504 |a Baumann, D., McAllister, L., (2015) Inflation and String Theory, Cambridge Monographs on Mathematical Physics, , Cambridge University Press URL 
504 |a Martin, J., Ringeval, C., First CMB constraints on the inflationary reheating temperature (2010) Phys. Rev. D, 82, p. 023511 
504 |a Martin, J., Ringeval, C., Vennin, V., Observing inflationary reheating (2015) Phys. Rev. Lett., 114 (8), p. 081303 
504 |a Martin, J., Ringeval, C., Vennin, V., Encyclopaedia inflationaris (2014) Phys. Dark Univ., 5-6, pp. 75-235 
504 |a Martin, J., Ringeval, C., Trotta, R., Vennin, V., The best inflationary models after planck (2014) J. Cosmol. Astropart. Phys., 1403, p. 039 
504 |a Grishchuk, L.P., Sidorov, Y.V., Squeezed quantum states of relic gravitons and primordial density fluctuations (1990) Phys. Rev. D, 42, pp. 3413-3421 
504 |a Grishchuk, L., Haus, H.A., Bergman, K., Generation of squeezed radiation from vacuum in the cosmos and the laboratory (1992) Phys. Rev. D, 46, pp. 1440-1449 
504 |a Polarski, D., Starobinsky, A.A., Semiclassicality and decoherence of cosmological perturbations (1996) Classical Quantum Gravity, 13, pp. 377-392 
504 |a Lesgourgues, J., Polarski, D., Starobinsky, A.A., Quantum to classical transition of cosmological perturbations for nonvacuum initial states (1997) Nucl. Phys., B497, pp. 479-510 
504 |a Grishchuk, L.P., Martin, J., Best unbiased estimates for the microwave background anisotropies (1997) Phys. Rev. D, 56, pp. 1924-1938 
504 |a Kiefer, C., Polarski, D., Why do cosmological perturbations look classical to us? (2009) Adv. Sci. Lett., 2, pp. 164-173 
504 |a Kiefer, C., Lohmar, I., Polarski, D., Starobinsky, A.A., Pointer states for primordial fluctuations in inflationary cosmology (2007) Classical Quantum Gravity, 24, pp. 1699-1718 
504 |a Egusquiza, I.L., Feinstein, A., Perez Sebastian, M.A., Valle Basagoiti, M.A., On the entropy and the density matrix of cosmological perturbations (1998) Classical Quantum Gravity, 15, pp. 1927-1936 
504 |a Burgess, C.P., Holman, R., Hoover, D., Decoherence of inflationary primordial fluctuations (2008) Phys. Rev. D, 77, p. 063534 
504 |a Nomura, Y., Physical theories, eternal inflation, and quantum universe (2011) J. High Energy Phys., 11, p. 063 
504 |a Nomura, Y., Quantum mechanics, spacetime locality, and gravity (2013) Found. Phys., 43, pp. 978-1007 
504 |a Mukhanov, V., Physical Foundations of Cosmology (2005), Cambridge University Press New York; Albrecht, A., Ferreira, P., Joyce, M., Prokopec, T., Inflation and squeezed quantum states (1994) Phys. Rev. D, 50, pp. 4807-4820 
504 |a Sudarsky, D., Shortcomings in the understanding of why cosmological perturbations look classical (2011) Internat. J. Modern Phys. D, 20, pp. 509-552 
504 |a Landau, S.J., León, G., Sudarsky, D., Quantum origin of the primordial fluctuation spectrum and its statistics (2013) Phys. Rev. D, 88 (2), p. 023526 
504 |a Martin, J., Vennin, V., Observational constraints on quantum decoherence during inflation (2018) J. Cosmol. Astropart. Phys., 1805, p. 063 
504 |a Martin, J., Vennin, V., Non gaussianities from quantum decoherence during inflation (2018) J. Cosmol. Astropart. Phys., 1806, p. 037 
504 |a Perez, A., Sahlmann, H., Sudarsky, D., On the quantum origin of the seeds of cosmic structure (2006) Classical Quantum Gravity, 23, pp. 2317-2354 
504 |a Cañate, P., Pearle, P., Sudarsky, D., Continuous spontaneous localization wave function collapse model as a mechanism for the emergence of cosmological asymmetries in inflation (2013) Phys. Rev. D, 87 (10), p. 104024 
504 |a Penrose, R., On gravity's role in quantum state reduction (1996) Gen. Relativity Gravitation, 28, pp. 581-600 
504 |a Diosi, L., A universal master equation for the gravitational violation of quantum mechanics (1987) Phys. Lett. A, 120, p. 377 
504 |a Diosi, L., Models for universal reduction of macroscopic quantum fluctuations (1989) Phys.Rev. A, 40, pp. 1165-1174 
504 |a Martin, J., Vennin, V., Peter, P., Cosmological inflation and the quantum measurement problem (2012) Phys. Rev. D, 86 (10), p. 103524 
504 |a Das, S., Lochan, K., Sahu, S., Singh, T.P., Quantum to classical transition of inflationary perturbations: Continuous spontaneous localization as a possible mechanism (2013) Phys. Rev., D88 (8), p. 085020. , [Phys. Rev. D89 (10) (2014) 109902 (erratum)] 
504 |a Das, S., Sahu, S., Banerjee, S., Singh, T.P., Classicalization of inflationary perturbations by collapse models in the light of BICEP2 (2014) Phys. Rev. D, 90 (4), p. 043503 
504 |a León, G., Bengochea, G.R., Emergence of inflationary perturbations in the CSL model (2016) Eur. Phys. J. C, 76 (1), p. 29 
504 |a Alexander, S., Jyoti, D., Magueijo, J., Inflation and the quantum measurement problem (2016) Phys. Rev. D, 94 (4), p. 043502 
504 |a Markkanen, T., Rasanen, S., Wahlman, P., Inflation without quantum gravity (2015) Phys. Rev. D, 91 (8), p. 084064 
504 |a de Unánue, A., Sudarsky, D., Phenomenological analysis of quantum collapse as source of the seeds of cosmic structure (2008) Phys. Rev. D, 78 (4), p. 043510 
504 |a León, G., Sudarsky, D., The slow-roll condition and the amplitude of the primordial spectrum of cosmic fluctuations: contrasts and similarities of the standard account and the ’collapse scheme’ (2010) Classical Quantum Gravity, 27 (22), p. 225017 
504 |a Leon, G., De Unanue, A., Sudarsky, D., Multiple quantum collapse of the inflaton field and its implications on the birth of cosmic structure (2011) Classical Quantum Gravity, 28, p. 155010 
504 |a Diez-Tejedor, A., Sudarsky, D., Towards a formal description of the collapse approach to the inflationary origin of the seeds of cosmic structure (2012) J. Cosmol. Astropart. Phys., 7, p. 45 
504 |a Juárez-Aubry, B.A., Kay, B.S., Sudarsky, D., Generally covariant dynamical reduction models and the Hadamard condition (2018) Phys. Rev. D, 97 (2), p. 025010 
504 |a Cañate, P., Ramirez, E., Sudarsky, D., Semiclassical self consistent treatment of the emergence of seeds of cosmic structure. The second order construction (2018) J. Cosmol. Astropart. Phys., 1808 (8), p. 043 
504 |a Landau, S.J., Scoccola, C.G., Sudarsky, D., Cosmological constraints on non-standard inflationary quantum collapse models (2012) Phys. Rev. D, 85, p. 123001 
504 |a León, G., Landau, S.J., Piccirilli, M.P., Inflation including collapse of the wave function: The quasi-de Sitter case (2015) Eur. Phys. J., C75 (8), p. 393 
504 |a Benetti, M., Landau, S.J., Alcaniz, J.S., Constraining quantum collapse inflationary models with CMB data (2016) J. Cosmol. Astropart. Phys., 1612 (12), p. 035 
504 |a Piccirilli, M.P., León, G., Landau, S.J., Benetti, M., Sudarsky, D., Constraining quantum collapse inflationary models with current data: the semiclassical approach (2018) Int. J. Mod. Phys. D, 28 (2), p. 1950041 
504 |a León, G., Kraiselburd, L., Landau, S.J., Primordial gravitational waves and the collapse of the wave function (2015) Phys. Rev. D, 92 (8), p. 083516 
504 |a León, G., Majhi, A., Okon, E., Sudarsky, D., Reassessing the link between B-modes and inflation (2017) Phys. Rev. D, 96 (10), p. 101301 
504 |a León, G., Majhi, A., Okon, E., Sudarsky, D., Expectation of primordial gravity waves generated during inflation (2018) Phys. Rev. D, 98 (2), p. 023512 
504 |a Wheeler, J.A., Geometrodynamics and the issue of the final state (1964) Relativity, Groups, and Topology, Gordon and Breach, , DeWitt B.S. DeWitt C 
504 |a Finkelstein, D., Space–time code (1969) Phys. Rev., 184, p. 1261 
504 |a Konopka, T., Markopoulou, F., Severini, S., Quantum graphity: a model of emergent locality (2008) Phys. Rev. D, 77, p. 104029 
504 |a Oriti, D., The group field theory approach to quantum gravity (2009) Approaches to Quantum Gravity, , Oriti D. Cambridge University Press 
504 |a Steinacker, H., Emergent geometry and gravity from matrix models: an introduction (2010) Classical Quantum Gravity, 27, p. 133001 
504 |a Eppley, K., Hannah, E., The necessity of quantizing the gravitational field (1977) Found. Phys., 7 (1), pp. 51-68 
504 |a Mattingly, J., Why Eppley and Hannah's thought experiment fails (2006) Phys. Rev. D, 73, p. 064025 
504 |a Huggett, N., Callender, C., Why quantize gravity (or any other field for that matter)? (2001) Philos. Sci., 68 (S3), pp. S382-S394 
504 |a Albers, M., Kiefer, C., Reginatto, M., Measurement analysis and quantum gravity (2008) Phys. Rev. D, 78, p. 064051 
504 |a Kent, A., Simple Refutation of the Eppley-Hannah Argument (2018); Page, D.N., Geilker, C.D., Indirect evidence for quantum gravity (1981) Phys. Rev. Lett., 47, pp. 979-982 
504 |a Carlip, S., Is quantum gravity necessary? (2008) Classical Quantum Gravity, 25, p. 154010 
504 |a Diez-Tejedor, A., Leon, G., Sudarsky, D., The collapse of the wave function in the joint metric-matter quantization for inflation (2012) Gen. Relativity Gravitation, 44, pp. 2965-2988 
504 |a Mariani, M., Bengochea, G.R., León, G., Inflationary gravitational waves in collapse scheme models (2016) Phys. Lett. B, 752, pp. 344-351 
504 |a Kinney, W.H., Horizon crossing and inflation with large eta (2005) Phys. Rev. D, 72, p. 023515 
504 |a Lewis, A., Challinor, A., Lasenby, A., Efficient computation of CMB anisotropies in closed FRW models (2000) Astrophys. J., 538, pp. 473-476 
504 |a Beutler, F., Blake, C., Colless, M., Jones, D.H., Staveley-Smith, L., Campbell, L., Parker, Q., Watson, F., The 6dF galaxy survey: baryon acoustic oscillations and the local hubble constant (2011) Mon. Not. R. Astron. Soc., 416, pp. 3017-3032 
504 |a Ross, A.J., Samushia, L., Howlett, C., Percival, W.J., Burden, A., Manera, M., The clustering of the SDSS DR7 main Galaxy sample - I. A 4 per cent distance measure at z = 0.15 (2015) Mon. Not. R. Astron. Soc., 449, pp. 835-847 
504 |a Anderson, L., The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples (2014) Mon. Not. R. Astron. Soc., 441 (1), pp. 24-62 
504 |a Lewis, A., Bridle, S., Cosmological parameters from CMB and other data: A Monte Carlo approach (2002) Phys. Rev. D, 66 (10), p. 103511 
520 3 |a The physical mechanism responsible for the emergence of primordial cosmic seeds from a perfect isotropic and homogeneous Universe has not been fully addressed in standard cosmic inflation. To handle this shortcoming, D. Sudarsky et al have developed a proposal: the self-induced collapse hypothesis. In this scheme, the objective collapse of the inflaton's wave function generates the inhomogeneity and anisotropy at all scales. In this paper we analyze the viability of a set of inflationary potentials in both the context of the collapse proposal and within the standard inflationary framework. For this, we perform a statistical analysis using recent CMB and BAO data to obtain the prediction for the scalar spectral index n s in the context of a particular collapse model: the Wigner scheme. The predicted n s and the tensor-to-scalar ratio r in terms of the slow roll parameters is different between the collapse scheme and the standard inflationary model. For each potential considered we compare the prediction of n s and r with the limits established by observational data in both pictures. The result of our analysis shows in most cases a difference in the inflationary potentials allowed by the observational limits in both frameworks. In particular, in the standard approach the more concave a potential is, the more is favored by the data. On the other hand, in the Wigner scheme, the data favors equally all type of concave potentials, including those at the border between convex and concave families. © 2019 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Universidad Nacional de La Plata 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, G140 
536 |a Detalles de la financiación: The authors are supported by PIP 11220120100504 ( CONICET, Argentina ) and grant G140 ( UNLP, Argentina ). 
593 |a Grupo de Astrofísica, Relatividad y Cosmología, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N 1900 La Plata, Argentina 
593 |a CONICET, Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, 1425, Argentina 
593 |a Departamento de Física and IFIBA, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria - Pab. I, Buenos Aires, 1428, Argentina 
700 1 |a Pujol, A. 
700 1 |a Landau, S.J. 
700 1 |a Piccirilli, M.P. 
773 0 |d Elsevier B.V., 2019  |g v. 24  |p Phys. Dark Universe  |x 22126864  |t Physics of the Dark Universe 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061993087&doi=10.1016%2fj.dark.2019.100285&partnerID=40&md5=f293d33430b604767a2583f3dcc86a49  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.dark.2019.100285  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_22126864_v24_n_p_Leon  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_22126864_v24_n_p_Leon  |y Registro en la Biblioteca Digital 
961 |a paper_22126864_v24_n_p_Leon  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86589