Late Cretaceous paleogeography of the Antarctic Peninsula: New paleomagnetic pole from the James Ross Basin

Two paleomagnetic poles of 80 and 75 Ma have been computed from 191 to 123 paleomagnetic samples, respectively, of the marine sedimentary units of the Upper Cretaceous Marambio Group exposed in the James Ross Island, Antarctic Peninsula. Paleomagnetic behaviors during stepwise thermal demagnetizatio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Milanese, F.
Otros Autores: Rapalini, A., Slotznick, S.P, Tobin, T.S, Kirschvink, J., Olivero, E.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 22268caa a22015377a 4500
001 PAPER-25614
003 AR-BaUEN
005 20230518205742.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85061395057 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Milanese, F. 
245 1 0 |a Late Cretaceous paleogeography of the Antarctic Peninsula: New paleomagnetic pole from the James Ross Basin 
260 |b Elsevier Ltd  |c 2019 
270 1 0 |m Milanese, F.; Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA), CONICET, Universidad de Buenos AiresArgentina; email: fnmilanese@gl.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Bakhmutov, V., Shpyra, V., Palaeomagnetism of late cretaceous-paleocene igneous rocks from the western part of the antarctic Peninsula (Argentine islands archipelago) (2011) Geol. Q., 55, pp. 285-300 
504 |a Barker, P.F., Scotia sea regional tectonic evolution: implications for mantle flow and palaeocirculation (2001) Earth Sci. Rev. 
504 |a Barron, E.J., Hashimoto, J., Ii, J.L.S., Hay, W.W., Paleogeography, 180 million years ago to present (1981) Eclogae Geol. Helv., 74, pp. 443-470 
504 |a Crame, J.A., Francis, J.E., Cantrill, D.J., Pirrie, D., Maastrichtian stratigraphy of Antarctica (2004) Cretac. Res., 25, pp. 411-423 
504 |a Cunningham, W.D., Klepeis, K.A., Gose, W.A., Dalziel, I.W.D., The Patagonian Orocline: new Paleomagnetic Data From the Andean Magmatic Arc in Tierra del Fuego, Chile (1991) journal of geoph, 96, pp. 16061-16067 
504 |a Dalziel, I.W.D., Elliot, D.H., The Scotia arc and Antarctic margin (1973) The Ocean Basins and Margins - the South Atlantic, pp. 171-246. , A.E.M. Naim F.G. Stehl Springer Boston 
504 |a Dalziel, I.W.D., Kligfield, R., Lowrie, W., Opdyke, N.D., No title (1973) Implications of Continental Drift to the Earth Sciences, 1, pp. 87-101 
504 |a Dalziel, I.W.D., Lawver, L.A., Norton, I.O., Gahagan, L.M., The Scotia arc: genesis, evolution, global significance (2013) Annu. Rev. Earth Planet Sci., 41, pp. 767-793 
504 |a Del Valle, R.A., Fourcade, N.H., Medina, F.A., Geología del extremo norte del borde oriental de la península antártica e islas adyacentes entre los 63° 25’ y los 65° 15’ de latitud sur (1983), Dirección Nacional del Antártico, Instituto Antártico Argentino; Diraison, M., Cobbold, P.R., Gapais, D., Rossello, E.A., Le Corre, C., Cenozoic crustal thickening, wrenching and rifting in the foothills of the southernmost Andes (2000) Tectonophysics, 316, pp. 91-119 
504 |a Dunlop, D.J., Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data (2002) J. Geophys. Res., 107, pp. 1-22 
504 |a Eagles, G., Tectonic reconstructions of the southernmost Andes and the Scotia sea during the opening of the drake passage (2016) Geodynamic Evolution of the Southernmost Andes, pp. 75-108. , M.C. Ghiglione Springer Cham 
504 |a Eagles, G., Jokat, W., Tectonic reconstructions for paleobathymetry in drake passage (2014) Tectonophysics, 611, pp. 28-50 
504 |a Eagles, G., Livermore, R., Morris, P., Small basins in the Scotia sea: the eocene drake passage gateway (2006) Earth Planet. Sci. Lett., 242, pp. 343-353 
504 |a Eagles, G., Livermore, R.A., Fairhead, J.D., Morris, P., Tectonic evolution of the west Scotia sea (2005) J. Geophys. Res.: Solid Earth, 110, pp. 1-19 
504 |a Ernesto, M., Marques, L.S., Piccirillo, E.M., Molina, E.C., Ussami, N., Comin-Chiaramonti, P., Bellieni, G., Paraná Magmatic Province-Tristan da Cunha plume system: fixed versus mobile plume, petrogenetic considerations and alternative heat sources (2002) J. Volcanol. Geoth. Res., 118, pp. 15-36 
504 |a Fisher, R., Dispersion on a sphere (1953) Proc. Math. Phys. Eng. Sci., 217, pp. 295-305 
504 |a Francis, J.E., Crame, J.A., Pirrie, D., (2006) Cretaceous-Tertiary High-Latitude Palaeoenvironments, James Ross Basin, Antarctica: Introduction, 258, pp. 1-5. , Geological Society of London, Special Publications 
504 |a Gao, L., Zhao, Y., Yang, Z., Liu, J., Liu, X., Zhang, S.-H., Pei, J., New paleomagnetic and 40Ar/39Ar geochronological results for the South Shetland Islands, West Antarctica, and their tectonic implications (2018) J. Geophys. Res.: Solid Earth, 123, pp. 4-30 
504 |a Ghidella, M.E., Yáñez, G., LaBrecque, J.L., Revised tectonic implications for the magnetic anomalies of the western Weddell Sea (2002) Tectonophysics, 347, pp. 65-86 
504 |a Ghiglione, M.C., Cristallini, E.O., Have the southernmost Andes been curved since Late Cretaceous time? An analog test for the Patagonian Orocline (2007) Geology, 35, pp. 13-16 
504 |a Grunow, A.M., New paleomagnetic data from the Antarctica Peninsula and their tectonic implications (1993) J. Geophys. Res.: Solid Earth, 98, pp. 13815-13833 
504 |a Harrison, C.G.A., Barron, E.J., Hay, W.W., Mesozoic evolution of the antarctic Peninsula and the southern Andes (1979) Geology, 7, pp. 374-378 
504 |a Hathway, B., Continental rift to back-arc basin : jurassic – cretaceous stratigraphical and structural evolution of the larsen basin, antarctic Peninsula (2000) J. Geol. Soc., 157, pp. 417-432 
504 |a Hervé, F., Miller, H., Pimpirev, C., Patagonia — Antarctica connections before Gondwana break-up (2006) Antarctica, pp. 217-227. , Springer Berlin, Heidelberg 
504 |a Huang, W., Dupont-Nivet, G., Lippert, P.C., Van Hinsbergen, D.J.J., Hallot, E., Inclination shallowing in eocene linzizong sedimentary rocks from southern tibet: correction, possible causes and implications for reconstructing the India-asia collision (2013) Geophys. J. Int., 194, pp. 1390-1411 
504 |a Ineson, J.R., Coarse-grained submarine fan and slope apron deposits in a Cretaceous back-arc basin, Antarctica (1989) Sedimentology, 36, pp. 793-819 
504 |a Ineson, J.R., Crame, J.A., Thomson, M.R.A., Lithostratigraphy of the cretaceous strata of west James Ross island, Antarctica (1986) Cretac. Res., 7, pp. 141-159 
504 |a Jones, C.H., User-driven integrated software lives: “PaleoMag” paleomagnetics analysis on the macintosh (2002) Comput. Geosci., 28, pp. 1145-1151 
504 |a Kirschvink, J.L., The least-squares line and plane and the analysis of palaeomagnetic data (1980) Geophys. J. R. Astron. Soc., 62, pp. 699-718 
504 |a Kodama, K.P., Paleomagnetism of Sedimentary Rocks: Processes and Interpretation (2012), Wiley-Blackwell; Kodama, K.P., Simplification of the anisotropy-based inclination correction technique for magnetite- and haematite-bearing rocks: a case study for the Carboniferous Glenshaw and Mauch Chunk Formations, North America (2009) Geophys. J. Int., 176, pp. 467-477 
504 |a König, M., Jokat, W., The mesozoic breakup of the Weddell Sea (2006) J. Geophys. Res.: Solid Earth, 111, pp. 1-28 
504 |a Koymans, M.R., Langereis, C.G., Pastor-Galán, D., van Hinsbergen, D.J.J., Paleomagnetism.org: an online multi-platform open source environment for paleomagnetic data analysis (2016) Comput. Geosci., 93, pp. 127-137 
504 |a Kraemer, P.E., Orogenic shortening and the origin of the Patagonian orocline (56° S.Lat) (2003) J. S. Am. Earth Sci., 15, pp. 731-748 
504 |a Lagabrielle, Y., Goddéris, Y., Donnadieu, Y., Mallavielle, J., Suarez, M., The tectonic history of Drake Passage and its possible impacts on global climate (2009) Earth Planet. Sci. Lett., 279, pp. 197-211 
504 |a Lawver, L.A., Gahagan, L.M., Evolution of cenozoic seaways in the circum-antarctic region (2003) Palaeogeogr. Palaeoclimatol. Palaeoecol., 198, pp. 11-37 
504 |a Lawver, L.A., Gahagan, L.M., Coffin, M.F., The development of paleoseaways around Antarctica (1992) The Antarctic Paleoenvironment: A Perspective on Global Change: Part One, 56, pp. 7-30 
504 |a Lirio, J.M., Marenssi, S.A., Santillana, S., Marshall, P., El Grupo Marambio en el Sudeste de la isla James Ross, Antártida (1989), Contribución del Instituto Antártico Argentino; Livermore, R., Hillenbrand, C.D., Meredith, M., Eagles, G., Drake Passage and Cenozoic climate: an open and shut case? (2007) Geochem. Geophys. Geosyst., 8 
504 |a Livermore, R., Nankivell, A., Eagles, G., Morris, P., Paleogene opening of drake passage (2005) Earth Planet. Sci. Lett., 236, pp. 459-470 
504 |a Lodolo, E., Donda, F., Tassone, A., Western Scotia sea margins: improved constraints on the opening of the drake passage (2006) J. Geophys. Res.: Solid Earth, 111, pp. 1-14 
504 |a Marenssi, S.A., Lirio, J.M., Santillana, S., Martinioni, D.R., Palamarczuk, S., El Cretácico Superior del sudeste de la isla James Ross, Antártida (1992) Geología de La Isla James Ross, pp. 77-85. , C.A. Rinaldi Instituto Antártico Argentino Buenos Aires 
504 |a Martinioni, D.R., La Formación Rabot (Cretácico superior, Isla James Ross, Antártida): un ciclo transgresivo-regresivo de plataforma con dominio de procesos de tormenta (1992) Geología de La Isla James Ross, Antártida, pp. 101-123. , C.A. Rinaldi Instituto Antártico Argentino Buenos Aires 
504 |a McArthur, J.M., Crame, J.A., Thirlwall, M.F., Definition of Late Cretaceous stage boundaries in Antarctica using strontium isotope stratigraphy (2000) J. Geol., 108, pp. 623-640 
504 |a McFadden, P.L., McElhinny, M.W., The combined analysis of remagnetization circles and direct observations in palaeomagnetism (1988) Earth Planet. Sci. Lett., 87, pp. 161-172 
504 |a McFadden, P.L.L., McElhinny, M.W., Classification of the reversal test in palaeomagnetism (1990) Geophys. J. Int., 103, pp. 725-729 
504 |a Menichetti, M., Lodolo, E., Tassone, A., Structural geology of the Fueguian Andes and Magallanes fold-and-thrust belt - Tierra del Fuego Island (2008) Geol. Acta, 6, pp. 85-100 
504 |a Milanese, F.N., Magnetoestratigrafía del Cretácico Superior de la Magnetoestratigrafía del Cretácico Superior de la cuenca James Ross, Antártida (2018), Universidad de Buenos Aires; Milanese, F.N., Olivero, E.B., Kirschvink, J.L., Rapalini, A.E., Magnetostratigraphy of the Rabot formation, upper cretaceous, James Ross Basin, antarctic Peninsula (2017) Cretac. Res., 72, pp. 172-187 
504 |a Milanese, F.N., Olivero, E.B., Raffi, M.E., Franceschinis, P.R., Gallo, L.C., Skinner, S.M., Mitchell, R.N., Rapalini, A.E., Mid campanian-lower maastrichtian magnetostratigrahy of the James Ross Basin, Antarctica: chronostratigraphical implications (2018) Basin Res. 
504 |a Nawrocki, J., Panczyk, M., Williams, I.S., Isotopic ages and palaeomagnetism of selected magmatic rocks from king George island (antarctic Peninsula) (2010) J. Geol. Soc., 167, pp. 1063-1079. , London 
504 |a Ogg, J.G., Ogg, G.M., Gradstein, F.M., A Concise Geologic Time Scale: 2016 (2016), Elsevier B.V. Amsterdam, Oxford, Cambridge; Olivero, E.B., Sedimentary cycles, ammonite diversity and palaeoenvironmental changes in the Upper Cretaceous Marambio Group, Antarctica (2012) Cretac. Res., 34, pp. 348-366 
504 |a Olivero, E.B., Asociaciones de Amonites de la Formación Santa Marta (cretácico tardío), isla James Ross, antártida (1992) Geología de La Isla James Ross, pp. 45-75. , C.A. Rinaldi Instituto Antártico Argentino Buenos Aires 
504 |a Olivero, E.B., Early campanian heteromorph ammonites from James Ross island, Antarctica (1988) Natl. Geogr. Res., 4, pp. 259-271 
504 |a Olivero, E.B., Nuevos amonites campanianos de la Isla James Ross, antártida (1984) Ameghiniana, 21, pp. 53-84 
504 |a Olivero, E.B., Scasso, R.A., Rinaldi, C.A., (1986) Revision of the Marambio Group, James Ross Island, Antarctica, 331, p. 27. , Contribution del Instituto Antártico Argentino 
504 |a Pan, Y., Zhu, R., Banerjee, S.K., Gill, J., Williams, Q., Rock magnetic properties related to thermanl treatment of siderite: behavior and interpretation (2000) J. Geophys. Res., 105, pp. 783-794 
504 |a Pirrie, D., Crame, J.A., Lomas, S.A., Riding, J.B., Late cretaceous stratigraphy of the admiralty sound region, James Ross Basin, Antarctica (1997) Cretac. Res., 18, pp. 109-137 
504 |a Poblete, F., Arriagada, C., Roperch, P., Astudillo, N., Hervé, F., Kraus, S., Le Roux, J.P., Paleomagnetism and tectonics of the south Shetland islands and the northern antarctic Peninsula (2011) Earth Planet. Sci. Lett., 302, pp. 299-313 
504 |a Poblete, F., Roperch, P., Arriagada, C., Ruffet, G., Ramírez de Arellano, C., Hervé, F., Poujol, M., Late cretaceous–early eocene counterclockwise rotation of the fueguian Andes and evolution of the patagonia–antarctic Peninsula system (2016) Tectonophysics, 668-669, pp. 15-34 
504 |a Rapalini, A.E., A paleomagnetic analysis of the Patagonian orocline (2007) Geol. Acta, 5, pp. 287-294 
504 |a Rapalini, A.E., Peroni, J., Luppo, T., Tassone, A., Cerredo, M.E., Esteban, F., Lippai, H., Vilas, J.F., Palaeomagnetism of Mesozoic Magmatic Bodies of the Fuegian Cordillera: Implications for the Formation of the Patagonian Orocline (2015), p. 3. , Geological Society London Special Publications SP425; Riding, J.B., Crame, J.A., Aptian to coniacian (Early-Late cretaceous) palynostratigraphy of the Gustav group, James Ross Basin, Antarctica (2002) Cretac. Res., 23, pp. 739-760 
504 |a Riding, J.B., Crame, J.A., Dettmann, M.E., Cantrill, D.J., The age of the base of the Gustav group in the James Ross Basin, Antarctica (1998) Cretac. Res., 19, pp. 87-105 
504 |a Rinaldi, C.A., Massabie, A., Morelli, J., Roseman, H.L., del Valle, R.A., (1978) Geologia de la isla Vicecomodoro Marambio, 217, pp. 1-37. , Contribución del Instituto Antártico Argentino 
504 |a Scasso, R.A., Olivero, E.B., Buatois, L.A., Lithofacies, biofacies, and ichnoassemblage evolution of a shallow submarine volcaniclastic fan-shelf depositional system (Upper Cretaceous, James Ross Island, Antarctica) (1991) J. S. Am. Earth Sci., 4, pp. 239-260 
504 |a Scher, H.D., Martin, E.E., Timing and climatic consequences of the opening of drake passage (2006) Science, 312, pp. 428-430 
504 |a Somoza, R., Eocene paleomagnetic pole for South America: northward continental motion in the cenozoic, opening of drake passage and caribbean convergence (2007) J. Geophys. Res.: Solid Earth, 112, pp. 1-11 
504 |a Somoza, R., Zaffarana, C.B., Mid-Cretaceous polar standstill of South America, motion of the Atlantic hotspots and the birth of the Andean cordillera (2008) Earth Planet. Sci. Lett., 271, pp. 267-277 
504 |a Storey, B.C., Vaughan, A.P.M., Millar, I.L., Geodynamic evolution of the antarctic Peninsula during mesozoic times and its bearing on Weddell Sea history (1996) Geological Society of London, Special Publications, 108, pp. 87-103 
504 |a Tauxe, L., Kent, D.V., A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: was the ancient magnetic field dipolar (2004) Timescales of the Paleomagnetic Field, 145, pp. 101-115 
504 |a Tauxe, L., Kodama, K.P., Kent, D.V., Testing corrections for paleomagnetic inclination error in sedimentary rocks: a comparative approach (2008) Phys. Earth Planet. In., 169, pp. 152-165 
504 |a Tobin, T.S., Ward, P.D., Steig, E.J., Olivero, E.B., Hilburn, I.A., Mitchell, R.N., Diamond, M.R., Kirschvink, J.L., Extinction patterns, δ 18 O trends, and magnetostratigraphy from a southern high-latitude Cretaceous–Paleogene section: links with Deccan volcanism (2012) Palaeogeogr. Palaeoclimatol. Palaeoecol., 350-352, pp. 180-188 
504 |a Torres Carbonell, P.J., Dimieri, L.V., Olivero, E.B., Bohoyo, F., Galindo-Zaldívar, J., Structure and tectonic evolution of the fuegian Andes (southernmost South America) in the framework of the Scotia arc development (2014) Glob. Planet. Chang., 123, pp. 174-188 
504 |a Torsvik, T.H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P.V., van Hinsbergen, D.J.J., Tohver, E., Phanerozoic polar wander, palaeogeography and dynamics (2012) Earth Sci. Rev., 114, pp. 250-278 
504 |a Valencio, D.A., Mendía, J.E., Vilas, J.F., Paleomagnetism and K–Ar of mesozoic and cenozoic igneous rocks from Antarctica (1979) Earth Planet. Sci. Lett., 45, pp. 61-68 
504 |a Vandamme, D., A new method to determine paleosecular variation (1994) Phys. Earth Planet. In., 85, pp. 131-142 
504 |a Vérard, C., Flores, K., Stampfli, G., Geodynamic reconstructions of the South America-Antarctica plate system (2012) J. Geodyn., 53, pp. 43-60 
504 |a Watts, D.R., Watts, G.C., Bramall, A.M., Cretaceous and early tertiary paleomagnetic results from the antarctic Peninsula (1984) Tectonics, 3, pp. 333-346 
504 |a Whitham, A.G., Ineson, J.R., Pirrie, D., Marine volcaniclastics of the Hidden Lake formation (coniacian) of James Ross island, Antarctica: an enigmatic element in the history of a back-arc basin (2006) Geological Society of London, Special Publications, 258, pp. 21-47 
520 3 |a Two paleomagnetic poles of 80 and 75 Ma have been computed from 191 to 123 paleomagnetic samples, respectively, of the marine sedimentary units of the Upper Cretaceous Marambio Group exposed in the James Ross Island, Antarctic Peninsula. Paleomagnetic behaviors during stepwise thermal demagnetization and rock magnetic analyses indicate that magnetization is likely primary and carried by SD-PSD detrital titanomagnetite. Application of an inclination shallowing correction by the elongation-inclination method yielded a significant inclination shallowing affecting the older (ca. 80 Ma) succession exposed in the northwest area of the island. However, the paleomagnetic directions computed from the younger (ca. 75 Ma) succession outcropping in the southeast corner of the island yielded an indeterminate result using the same analysis. The inclination shallowing-corrected 80 Ma paleopole position plus previous ones of ca.110, 90 and 55 Ma were used to construct the Apparent Polar Wander Path (APWP) for the Antarctic Peninsula during the Late Cretaceous-Paleocene. This path confirms that oroclinal bending of the Antarctic Peninsula as well as relative displacement with respect to East Antarctica are negligible since 110 Ma. Comparison with the apparent polar wander path for South America for the 130-45 Ma period suggests that this continent and the Antarctic Peninsula kept a very similar relative paleogeographic position since 110 Ma until 55 Ma, which likely meant a physical link between both continental masses. During that period, both continents underwent a relatively fast southward displacement of around 7° and a clockwise rotation relative to the Earth spin axis that can be bracketed between around 100 and 90 Ma. Oroclinal bending of the Fuegian Andes was likely due to tectonic interactions between the Patagonian-Fuegian Andes and the Antarctic Peninsula promoted, at least partially, by such displacements. By 55 Ma the Antarctic Peninsula probably was starting or about to start its final separation from South America. © 2019 Elsevier Ltd  |l eng 
536 |a Detalles de la financiación: Office of Polar Programs 
536 |a Detalles de la financiación: National Science Foundation, 1341729, 0739541 
536 |a Detalles de la financiación: California Institute of Technology, Caltech 
536 |a Detalles de la financiación: To the Instituto Antártico Argentino for the logistic support during the Antarctic field seasons, and the NSF Office of Polar Programs (NSF grant 1341729 to JLK, #0739541 ) for support of the laboratory work at Caltech. Grants from ANPCyT ( PICTO 2010-0114 to E. Olivero) and Universidad de Buenos Aires ( UBACyT 20020130100465BA to A. Rapalini) provided additional support for this research. Constructive comments from to anonymous reviewers helped us to improve the final version of the manuscript. 
593 |a Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA), CONICET, Universidad de Buenos Aires, Argentina 
593 |a University of California, Berkeley, Berkeley, CA 94720, United States 
593 |a University of Alabama, Tuscaloosa, AL, United States 
593 |a Division of Geological and Planetary Sciences, California Institute of Techonoly, Pasadena, CA, United States 
593 |a Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, Japan 
593 |a CADIC, CONICET, Bernardo Houssay 200, Ushuaia, 9410, Argentina 
690 1 0 |a APPARENT POLAR WANDER PATH 
690 1 0 |a GUSTAV GROUP 
690 1 0 |a MARAMBIO GROUP 
690 1 0 |a PALEOMAGNETISM 
690 1 0 |a APPARENT POLAR WANDER PATH 
690 1 0 |a CRETACEOUS 
690 1 0 |a MAGNETIC FIELD 
690 1 0 |a MAGNETIZATION 
690 1 0 |a PALEOGEOGRAPHY 
690 1 0 |a PALEOMAGNETISM 
690 1 0 |a ANTARCTIC PENINSULA 
690 1 0 |a ANTARCTICA 
690 1 0 |a JAMES ROSS ISLAND 
690 1 0 |a WEST ANTARCTICA 
700 1 |a Rapalini, A. 
700 1 |a Slotznick, S.P. 
700 1 |a Tobin, T.S. 
700 1 |a Kirschvink, J. 
700 1 |a Olivero, E. 
773 0 |d Elsevier Ltd, 2019  |g v. 91  |h pp. 131-143  |p J. South Am. Earth Sci.  |x 08959811  |w (AR-BaUEN)CENRE-1080  |t Journal of South American Earth Sciences 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061395057&doi=10.1016%2fj.jsames.2019.01.012&partnerID=40&md5=16d3c17000280eb0261150928782d685  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jsames.2019.01.012  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_08959811_v91_n_p131_Milanese  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08959811_v91_n_p131_Milanese  |y Registro en la Biblioteca Digital 
961 |a paper_08959811_v91_n_p131_Milanese  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 86567