Hierarchically structured TiO 2 -based composites for Fenton-type oxidation processes

A novel hierarchically structured composite aimed as a stable catalyst for the heterogeneous Fenton-type (HFT) oxidation process was developed by using a cost-effective and versatile technique. Prussian Blue nanoparticles (PBNP) were dispersed onto aligned macroporous TiO 2 (rutile) monoliths prepar...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Doumic, L.I
Otros Autores: Génova, M., Žerjav, G., Pintar, A., Cassanello, M.C, Romeo, H.E, Ayude, M.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Academic Press 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 21057caa a22018137a 4500
001 PAPER-25599
003 AR-BaUEN
005 20230518205741.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85061636366 
024 7 |2 cas  |a ferrous gluconate, 299-29-6; hydrogen peroxide, 7722-84-1; hydroxyl radical, 3352-57-6; titanium dioxide, 1317-70-0, 1317-80-2, 13463-67-7, 51745-87-0 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JEVMA 
100 1 |a Doumic, L.I. 
245 1 0 |a Hierarchically structured TiO 2 -based composites for Fenton-type oxidation processes 
260 |b Academic Press  |c 2019 
270 1 0 |m Doumic, L.I.; Catalizadores y Superficies, INTEMA, Facultad de Ingeniería, UNMdP, Av. Juan.B. Justo 4302, Argentina; email: luciladoumic@fi.mdp.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Agrisuelas, J., García-Jareño, J.J., Gimenez-Romero, D., Vicente, F., Insights on the mechanism of insoluble-to-soluble Prussian Blue transformation (2009) J. Electrochem. Soc., 156 (10), p. P149 
504 |a Ahmadi, M., Kakavandi, B., Jorfi, S., Azizi, M., Oxidative degradation of aniline and benzotriazole over PAC@FeIIFe2IIIO4: A recyclable catalyst in a heterogeneous photo-Fenton-like system (2017) J. Photochem. Photobiol. Chem., 336, pp. 42-53 
504 |a Akhtar, F., Andersson, L., Ogunwumi, S., Hedin, N., Bergström, L., Structuring adsorbents and catalysts by processing of porous powders (2014) J. Eur. Ceram. Soc., 34 (7), pp. 1643-1666 
504 |a Bagheri, S., Muhd Julkapli, N., Bee Abd Hamid, S., Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis (2014) Sci. World J., pp. 1-21. , 2014 
504 |a Bu, F.-X., Hu, M., Zhang, W., Meng, Q., Xu, L., Jiang, D.-M., Jiang, J.-S., Three-dimensional hierarchical Prussian blue composed of ultrathin nanosheets: enhanced hetero-catalytic and adsorption properties (2015) Chem. Commun., 51 (99), pp. 17568-17571 
504 |a Byrne, C., Fagan, R., Hinder, S., McCormack, D.E., Pillai, S.C., New approach of modifying the anatase to rutile transition temperature in TiO 2 photocatalysts (2016) RSC Adv., 6 (97), pp. 95232-95238 
504 |a Chakrabarti, M.H., Roberts, E.P.L., Analysis of mixtures of ferrocyanide and ferricyanide using UV-visible spectroscopy for characterization of a novel redox flow battery (2008) J. Chem. Soc. Pakistan, 30, pp. 817-823 
504 |a Chen, F., Ma, W., He, J., Zhao, J., Fenton degradation of malachite green catalyzed by aromatic additives (2002) J. Phys. Chem., 106 (41), pp. 9485-9490 
504 |a Chu, W., Chan, K.H., Kwan, C.Y., Choi, K.Y., Degradation of atrazine by modified stepwise-Fenton's processes (2007) Chemosphere, 67 (4), pp. 755-761 
504 |a Costa, R.C.C., Moura, F.C.C., Ardisson, J.D., Fabris, J.D., Lago, R.M., Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides (2008) Appl. Catal. B Environ., 83 (1-2), pp. 131-139 
504 |a Cychosz, K.A., Guillet-Nicolas, R., García-Martínez, J., Thommes, M., Recent advances in the textural characterization of hierarchically structured nanoporous materials (2017) Chem. Soc. Rev., 46 (2), pp. 389-414 
504 |a Doumic, L.I., Haure, P.M., Cassanello, M.C., Ayude, M.A., Mineralization and efficiency in the homogeneous Fenton Orange G oxidation (2013) Appl. Catal. B Environ., 142-143, pp. 214-221 
504 |a Doumic, L.I., Salierno, G., Ramos, C., Haure, P.M., Cassanello, M.C., Ayude, M.A., “Soluble” vs. “insoluble” Prussian blue based catalysts: influence on Fenton-type treatment (2016) RSC Adv., 6 (52), pp. 46625-46633 
504 |a Doumic, L., Salierno, G., Cassanello, M., Haure, P., Ayude, M., Efficient removal of Orange G using Prussian Blue nanoparticles supported over alumina (2015) Catal. Today, 240, pp. 67-72 
504 |a Farah, A.M., Billing, C., Dikio, C.W., Dibofori-Orji, A.N., Oyedeji, O.O., Wankasi, D., Mtunzi, F.M., Dikio, E.D., Synthesis of Prussian Blue and its electrochemical detection of hydrogen peroxide based on cetyltrimethylammonium bromide (ctab) modified glassy carbon electrode (2013) Int. J. Electrochem. Sci., 8, pp. 12132-12146 
504 |a Garrido-Ramírez, E.G., Theng, B.K., Mora, M.L., Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions — A review (2010) Appl. Clay Sci., 47 (3-4), pp. 182-192 
504 |a Gournis, D., Papachristodoulou, C., Maccallini, E., Rudolf, P., Karakassides, M.A., Karamanis, D.T., A two-dimensional magnetic hybrid material based on intercalation of a cationic Prussian blue analog in montmorillonite nanoclay (2010) J. Colloid Interface Sci., 348 (2), pp. 393-401 
504 |a Gutiérrez, M.C., Ferrer, M.L., del Monte, F., Ice-Templated Materials: Sophisticated Structures Exhibiting Enhanced Functionalities Obtained after Unidirectional Freezing and Ice-Segregation-Induced Self-Assembly † (2008) Chem. Mater., 20 (3), pp. 634-648 
504 |a Güzel, F., Sayğılı, H., Sayğılı, G.A., Koyuncu, F., Elimination of anionic dye by using nanoporous carbon prepared from an industrial biowaste (2014) J. Mol. Liq., 194, pp. 130-140 
504 |a Harrelkas, F., Paulo, A., Alves, M.M., El Khadir, L., Zahraa, O., Pons, M.N., van der Zee, F.P., Photocatalytic and combined anaerobic–photocatalytic treatment of textile dyes (2008) Chemosphere, 72 (11), pp. 1816-1822 
504 |a He, J., Yang, X., Men, B., Wang, D., Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review (2016) J. Environ. Sci., 39, pp. 97-109 
504 |a Hisaindee, S., Meetani, M.A., Rauf, M.A., Application of LC-MS to the analysis of advanced oxidation process (AOP) degradation of dye products and reaction mechanisms (2013) Trac. Trends Anal. Chem., 49, pp. 31-44 
504 |a Kaye, S.S., Long, J.R., The role of vacancies in the hydrogen storage properties of Prussian blue analogues (2007) Catal. Today, 120 (3-4), pp. 311-316 
504 |a Kitada, A., Hasegawa, G., Kobayashi, Y., Kanamori, K., Nakanishi, K., Kageyama, H., Selective preparation of macroporous monoliths of conductive titanium oxides Ti n O 2 n –1 (n = 2, 3, 4, 6) (2012) J. Am. Chem. Soc., 134 (26), pp. 10894-10898 
504 |a Koncki, R., Chemical sensors and biosensors based on prussian blues (2002) Crit. Rev. Anal. Chem., 32 (1), pp. 79-96 
504 |a Kulesza, P.J., Malik, M.A., Denca, A., Strojek, J., In situ FT-IR/ATR spectroelectrochemistry of Prussian Blue in the solid state (1996) Anal. Chem., 68 (14), pp. 2442-2446 
504 |a Lee, J., Kim, S., Yoon, J., Rocking chair desalination battery based on Prussian Blue electrodes (2017) ACS Omega, 2 (4), pp. 1653-1659 
504 |a Lee, S.-H., Huh, Y.-D., Preferential evolution of prussian blue's morphology from cube to hexapod (2012) Bull. Korean Chem. Soc., 33 (3), pp. 1078-1080 
504 |a Lehto, J., Pettersson, M., Hinkula, J., Räsänen, M., Elomaa, M., Gases evolved in the thermal decomposition of potassium cobalt hexacyanoferrate(II) (1995) Thermochim. Acta, 265, pp. 25-30 
504 |a Leofanti, G., Padovan, M., Tozzola, G., Venturelli, B., Surface area and pore texture of catalysts (1998) Catal. Today, 41 (1-3), pp. 207-219 
504 |a Li, X., Wang, J., Rykov, A.I., Sharma, V.K., Wei, H., Jin, C., Prussian blue/TiO 2 nanocomposites as a heterogeneous photo-Fenton catalyst for degradation of organic pollutants in water (2015) Catal. Sci. Technol., 5 (1), pp. 504-514 
504 |a Lin, L., Huang, X., Wang, L., Tang, A., Synthesis, characterization and the electrocatalytic application of prussian blue/titanate nanotubes nanocomposite (2010) Solid State Sci., 12 (10), pp. 1764-1769 
504 |a Lin, S.-S., Gurol, M.D., Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications (1998) Environ. Sci. Technol., 32 (10), pp. 1417-1423 
504 |a Liu, S.-Q., Cheng, S., Feng, L.-R., Wang, X.-M., Chen, Z.-G., Effect of alkali cations on heterogeneous photo-Fenton process mediated by Prussian blue colloids (2010) J. Hazard. Mater., 182 (1-3), pp. 665-671 
504 |a Lopez-Orozco, S., Inayat, A., Schwab, A., Selvam, T., Schwieger, W., Zeolitic materials with hierarchical porous structures (2011) Adv. Mater., 23 (22-23), pp. 2602-2615 
504 |a Mimura, H., Lehto, J., Harjula, R., Chemical and Thermal Stability of Potassium Nickel Hexacyanoferrate (II) (1997) J. Nucl. Sci. Technol., 34 (6), pp. 582-587 
504 |a Munoz, M., de Pedro, Z.M., Menendez, N., Casas, J.A., Rodriguez, J.J., A ferromagnetic γ-alumina-supported iron catalyst for CWPO. Application to chlorophenols (2013) Appl. Catal. B Environ., 136-137, pp. 218-224 
504 |a Mustafa, S., Dilara, B., Nargis, K., Naeem, A., Shahida, P., Surface properties of the mixed oxides of iron and silica (2002) Colloid. Surf. A Physicochem. Eng. Asp., 205 (3), pp. 273-282 
504 |a Nidheesh, P.V., Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review (2015) RSC Adv., 5 (51), pp. 40552-40577 
504 |a Pandey, P.C., Pandey, A.K., Tetrahydrofuran hydroperoxide mediated synthesis of Prussian blue nanoparticles: a study of their electrocatalytic activity and intrinsic peroxidase-like behavior (2014) Electrochim. Acta, 125, pp. 465-472 
504 |a Parlett, C.M.A., Wilson, K., Lee, A.F., Hierarchical porous materials: catalytic applications (2013) Chem. Soc. Rev., 42 (9), pp. 3876-3893 
504 |a Pouran, R.S., Abdul Raman, A.A., Wan Daud, W.M.A., Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions (2014) J. Clean. Prod., 64, pp. 24-35 
504 |a Rusevova, K., Kopinke, F.-D., Georgi, A., Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions—Influence of Fe(II)/Fe(III) ratio on catalytic performance (2012) J. Hazard. Mater., 241-242, pp. 433-440 
504 |a Rytwo, G., Zakai, R., Wicklein, B., The Use of ATR-FTIR spectroscopy for quantification of adsorbed compounds (2015) J. Spectrosc., 2015, pp. 1-8 
504 |a Samain, L., Grandjean, F., Long, G.J., Martinetto, P., Bordet, P., Strivay, D., Relationship between the Synthesis of Prussian Blue Pigments, Their Color, Physical Properties, and Their Behavior in Paint Layers (2013) J. Phys. Chem. C, 117 (19), pp. 9693-9712 
504 |a Schwieger, W., Machoke, A.G., Weissenberger, T., Inayat, A., Selvam, T., Klumpp, M., Inayat, A., Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity (2016) Chem. Soc. Rev., 45 (12), pp. 3353-3376 
504 |a Soon, A.N., Hameed, B.H., Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process (2011) Desalination, 269 (1-3), pp. 1-16 
504 |a Su, B.-L., Sanchez, C., Yang, X.-Y., (2012) Hierarchically structured porous materials: from nanoscience to catalysis, separation, optics, energy, and life science, , Wiley-VCH Weinheim Clément Sanchez 
504 |a Sun, B., Smirniotis, P.G., Interaction of anatase and rutile TiO2 particles in aqueous photooxidation (2003) Catal. Today, 88 (1-2), pp. 49-59 
504 |a Sun, M.-H., Huang, S.-Z., Chen, L.-H., Li, Y., Yang, X.-Y., Yuan, Z.-Y., Su, B.-L., Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine (2016) Chem. Soc. Rev., 45 (12), pp. 3479-3563 
504 |a Thamaphat, K., Limsuwan, P., Ngotawornchai, B., Phase characterization of TiO2 powder by XRD and TEM (2008) Kasetsart J. Nat. Sci., 42, pp. 357-361 
504 |a Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) (2015) Pure Appl. Chem., 87 (9-10) 
504 |a Usman, M., Byrne, J.M., Chaudhary, A., Orsetti, S., Hanna, K., Ruby, C., Magnetite and green rust: synthesis, properties, and environmental applications of mixed-valent iron minerals (2018) Chem. Rev., 118 (7), pp. 3251-3304 
504 |a Vipin, A.K., Hu, B., Fugetsu, B., Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water (2013) J. Hazard. Mater., 258 (259), pp. 93-101 
504 |a Wang, G., Xu, L., Zhang, J., Yin, T., Han, D., Enhanced photocatalytic activity of powders (P25) via calcination treatment (2012) Int. J. Photoenergy, pp. 1-9. , 2012 
504 |a Wang, H., Huang, Y., Prussian-blue-modified iron oxide magnetic nanoparticles as effective peroxidase-like catalysts to degrade methylene blue with H2O2 (2011) J. Hazard. Mater., 191 (1-3), pp. 163-169 
504 |a Wang, J.L., Xu, L.J., Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application (2012) Crit. Rev. Environ. Sci. Technol., 42 (3), pp. 251-325 
504 |a Wang, X., Yu, J.C., Ho, C., Hou, Y., Fu, X., Photocatalytic activity of a Hierarchically macro/mesoporous Titania (2005) Langmuir, 21 (6), pp. 2552-2559 
504 |a Watzky, M.A., Endicott, J.F., Song, X., Lei, Y., Macatangay, A., Red-shifted cyanide stretching frequencies in cyanide-bridged transition metal donor−acceptor complexes. support for vibronic coupling (1996) Inorg. Chem., 35 (12), pp. 3463-3473 
504 |a Wu, C.-H., Chiu, Y.-T., Lin, K.-Y.A., Macrosphere-supported nanoscale Prussian blue analogues prepared via self-assembly as multi-functional heterogeneous catalysts for aqueous oxidative and reductive reactions (2018) Separ. Purif. Technol., 199, pp. 222-232 
504 |a Xu, P., Zeng, G.M., Huang, D.L., Feng, C.L., Hu, S., Zhao, M.H., Use of iron oxide nanomaterials in wastewater treatment: A review (2012) Sci. Total Environ., 424, pp. 1-10 
504 |a Xue, X., Hanna, K., Deng, N., Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide (2009) J. Hazard. Mater., 166 (1), pp. 407-414 
504 |a Yang, X., Tan, L., Xia, L., Wood, C.D., Tan, B., Hierarchical porous polystyrene monoliths from PolyHIPE (2015) Macromol. Rapid Commun., 36 (17), pp. 1553-1558 
504 |a Yue, Y., Zhang, Z., Binder, A.J., Chen, J., Jin, X., Overbury, S.H., Dai, S., Hierarchically superstructured Prussian Blue analogues: spontaneous assembly synthesis and applications as pseudocapacitive materials (2015) ChemSusChem, 8 (1), pp. 177-183 
504 |a Zhang, J., Zhang, C., Wei, G., Zhang, C., Zhu, J., He, H., Liang, X., Catalytic Activity of Titanomagnetite in Heterogeneous Fenton Reaction: Contribution from Structural Fe 2+ and Fe 3+ (2017) J. Nanosci. Nanotechnol., 17 (9), pp. 7015-7020 
504 |a Zhang, X.-Q., Gong, S.-W., Zhang, Y., Yang, T., Wang, C.-Y., Gu, N., Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity (2010) J. Mater. Chem., 20 (24), p. 5110 
520 3 |a A novel hierarchically structured composite aimed as a stable catalyst for the heterogeneous Fenton-type (HFT) oxidation process was developed by using a cost-effective and versatile technique. Prussian Blue nanoparticles (PBNP) were dispersed onto aligned macroporous TiO 2 (rutile) monoliths prepared via directional freezing of aqueous dispersions of TiO 2 nanoparticles. The catalytic performance was evaluated in the HFT oxidation of an azo dye frequently used as a model contaminant, Orange G (OG). Experiments were carried out in a liquid batch-recycle reactor, in which the liquid flow rate was set to ensure negligible external mass transfer resistance. The catalyst exhibited good activity to form highly oxidative radicals from hydrogen peroxide decomposition, which readily discolored OG. Significant reduction of the time required to attain complete discoloration and improvement in TOC removal were achieved by adjusting operating conditions and oxidant dosage strategies. Almost complete OG conversion at around 90 min and 34.4% of TOC removal after 4 h were achieved by using the best evaluated strategy. The catalyst activity was tested under specific operating conditions and remained unaltered during 42 cycles of 4 h each (total 168 h). The fresh and used PBNP/TiO 2 catalysts and the support were thoroughly characterized by several techniques. Results supported the excellent stability exhibited by the catalyst in the OG HFT oxidation. © 2019 Elsevier Ltd  |l eng 
536 |a Detalles de la financiación: Center for Outcomes Research and Evaluation, Yale School of Medicine, CORE 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBA 
536 |a Detalles de la financiación: Javna Agencija za Raziskovalno Dejavnost RS, ARRS 
536 |a Detalles de la financiación: Ministry of Science, Technology and Space 
536 |a Detalles de la financiación: Ministerio de Ciencia, Tecnología e Innovación Productiva, MINCyT, PICT2016-0083 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, ANPCyT 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET 
536 |a Detalles de la financiación: Financial support from CONICET, Argentina ; UBA, Argentina ; UNMdP, Argentina ; ANPCyT, Argentina ; Cooperation program between the Ministry of Science, Technology and Productive Innovation, Argentina and the Ministry of Higher Education, Science and Technology, Slovenia (MINCYT - MHEST) and ANPCyT ( PICT2016-0083 ). is gratefully acknowledged. G. Žerjav and A. Pintar acknowledge the financial support from the Slovenian Research Agency (research core funding No. P2-0150 ). We express our gratitude to Dr. Rodrigo Parra, Tech. P. Kalafatovich and Tech. H. Asencio for their valuable support. Appendix A 
593 |a División Catalizadores y Superficies, INTEMA-CONICET, Departamento de Ingeniería Química, Facultad de Ingeniería, UNMdP, Av. Juan B. Justo 4302, Mar del Plata, B7608FDQ, Argentina 
593 |a Department for Environmental Sciences and Engineering, National Institute of Chemistry, Hajdrihova 19, Ljubljana, SI-1001, Slovenia 
593 |a LARSI, Dep. Industrias, FCEyN, Universidad de Buenos Aires, Int. Güiraldes 2620, Buenos Aires, C1428BGA, Argentina 
593 |a División Polímeros Nanoestructurados, INTEMA-CONICET, Facultad de Ingeniería, UNMdP, Av. Juan B. Justo 4302, Mar del Plata, B7608FDQ, Argentina 
690 1 0 |a HETEROGENEOUS FENTON-TYPE OXIDATION 
690 1 0 |a HIERARCHICALLY STRUCTURED POROUS MATERIALS 
690 1 0 |a PRUSSIAN BLUE NANOPARTICLES 
690 1 0 |a STABILITY 
690 1 0 |a FERROUS GLUCONATE 
690 1 0 |a HYDROGEN PEROXIDE 
690 1 0 |a HYDROXYL RADICAL 
690 1 0 |a ORGANIC COMPOUND 
690 1 0 |a OXIDIZING AGENT 
690 1 0 |a TITANIUM DIOXIDE 
690 1 0 |a CATALYSIS 
690 1 0 |a CATALYST 
690 1 0 |a COMPOSITE 
690 1 0 |a DISPERSION 
690 1 0 |a DYE 
690 1 0 |a EXPERIMENT 
690 1 0 |a HYDROGEN PEROXIDE 
690 1 0 |a MASS TRANSFER 
690 1 0 |a NANOPARTICLE 
690 1 0 |a OXIDATION 
690 1 0 |a OXIDE 
690 1 0 |a POROUS MEDIUM 
690 1 0 |a RUTILE 
690 1 0 |a TITANIUM 
690 1 0 |a TOTAL ORGANIC CARBON 
690 1 0 |a ADSORPTION 
690 1 0 |a ARTICLE 
690 1 0 |a CATALYST 
690 1 0 |a DECOMPOSITION 
690 1 0 |a FENTON REACTION 
690 1 0 |a FIELD EMISSION SCANNING ELECTRON MICROSCOPY 
690 1 0 |a FLOW RATE 
690 1 0 |a FOURIER TRANSFORM INFRARED SPECTROSCOPY 
690 1 0 |a HEAT TREATMENT 
690 1 0 |a HYSTERESIS 
690 1 0 |a LIQUID 
690 1 0 |a MINERALIZATION 
690 1 0 |a OXIDATION 
690 1 0 |a POROSITY 
690 1 0 |a SURFACE AREA 
690 1 0 |a TEMPERATURE 
690 1 0 |a THERMOGRAVIMETRY 
690 1 0 |a X RAY DIFFRACTION 
700 1 |a Génova, M. 
700 1 |a Žerjav, G. 
700 1 |a Pintar, A. 
700 1 |a Cassanello, M.C. 
700 1 |a Romeo, H.E. 
700 1 |a Ayude, M.A. 
773 0 |d Academic Press, 2019  |g v. 236  |h pp. 591-602  |p J. Environ. Manage.  |x 03014797  |w (AR-BaUEN)CENRE-754  |t Journal of Environmental Management 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061636366&doi=10.1016%2fj.jenvman.2019.02.026&partnerID=40&md5=7370d51cd7a69163c5ebae8f520c1c91  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jenvman.2019.02.026  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03014797_v236_n_p591_Doumic  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03014797_v236_n_p591_Doumic  |y Registro en la Biblioteca Digital 
961 |a paper_03014797_v236_n_p591_Doumic  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86552