Estimation of latent heat flux using satellite land surface temperature and a variational data assimilation scheme over a eucalypt forest savanna in Northern Australia

In this study, the performance of the combined-source variational data assimilation scheme (CS-VDA) is assessed in detail using in situ heat fluxes (i.e. sensible heat (H) and latent heat (LE)) collected at a Eucalypt forest savanna of Northern Australia (Howard Springs). The CS VDA scheme estimates...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Barraza, V.
Otros Autores: Grings, Francisco Matías, Franco, Mariano Andrés, Douna, V., Entekhabi, D., Restrepo-Coupe, N., Huete, A., Gassmann, M., Roitberg, E.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2019
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14493caa a22011297a 4500
001 PAPER-25597
003 AR-BaUEN
005 20250428090337.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85060999409 
030 |a AFMEE 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Barraza, V. 
245 1 0 |a Estimation of latent heat flux using satellite land surface temperature and a variational data assimilation scheme over a eucalypt forest savanna in Northern Australia 
260 |b Elsevier B.V.  |c 2019 
270 1 0 |m Barraza, V.; Instituto de Astronomía y Física del Espacio (IAFE), CABAArgentina; email: vbarraza@iafe.uba.ar 
504 |a Allen, R.G., Pereira, L.S., Raes, D., Smith, M., (1998) Crop Evapotranspiration-Guidelines for Computing Crop Water requiRements-FAO Irrigation and drainage paper 56, 300, p. 6541. , FAO Rome 
504 |a Barraza, V., Restrepo-Coupe, N., Huete, A., Grings, F., Van Gorsel, E., Passive microwave and optical index approaches for estimating surface conductance and evapotranspiration in forest ecosystems (2015) Agric. For. Meteorol., 213, pp. 126-137 
504 |a Barraza, V., Restrepo-Coupe, N., Huete, A., Grings, F., Beringer, J., Cleverly, J., Eamus, D., Estimation of latent heat flux over savannah vegetation across the North Australian Tropical Transect from multiple sensors and global meteorological data (2017) Agric. For. Meteorol., 232, pp. 689-703 
504 |a Bateni, S.M., Entekhabi, D., Relative efficiency of land surface energy balance components (2012) Water Resour. Res., 48 
504 |a Bateni, S.M., Entekhabi, D., Jeng, D.-S., Variational assimilation of land surface temperature and the estimation of surface energy balance components (2013) J. Hydrol. (Amst), 481, pp. 143-156 
504 |a Bohren, C.F., Albrecht, B.A., Atmospheric Thermodynamics, Edición: New. ed. (1998), OUP USA New York; Boussetta, S., Koike, T., Yang, K., Graf, T., Pathmathevan, M., Development of a coupled land–atmosphere satellite data assimilation system for improved local atmospheric simulations (2008) Remote Sens. Environ., 112, pp. 720-734 
504 |a Carlson, T., An overview of the “Triangle method” for estimating surface evapotranspiration and soil moisture from satellite imagery (2007) Sensors, 7, pp. 1612-1629 
504 |a Castelli, F., Entekhabi, D., Caporali, E., Estimation of surface heat flux and an index of soil moisture using adjoint-state surface energy balance (1999) Water Resour. Res., 35, pp. 3115-3125 
504 |a Cleugh, H.A., Leuning, R., Mu, Q., Running, S.W., Regional evaporation estimates from flux tower and MODIS satellite data (2007) Remote Sens. Environ., 106, pp. 285-304 
504 |a Crow, W.T., Kustas, W.P., Utility of assimilating surface radiometric temperature observations for evaporative fraction and heat transfer coefficient retrieval (2005) Bound.-Layer Meteorol., 115, pp. 105-130 
504 |a Gillies, R.R., Kustas, W.P., Humes, K.S., A verification of the'triangle'method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface e (1997) Int. J. Remote Sens., 18, pp. 3145-3166 
504 |a Guerschman, J.P., Van Dijk, A.I.J.M., Mattersdorf, G., Beringer, J., Hutley, L.B., Leuning, R., Pipunic, R.C., Sherman, B.S., Scaling of potential evapotranspiration with MODIS data reproduces flux observations and catchment water balance observations across Australia (2009) J. Hydrol. (Amst), 369, pp. 107-119 
504 |a Hu, Z., Islam, S., Prediction of ground surface temperature and soil moisture content by the force-restore method (1995) Water Resour. Res., 31, pp. 2531-2539 
504 |a Huntingford, C., Hugo Lambert, F., Gash, J.H., Taylor, C.M., Challinor, A.J., Aspects of climate change prediction relevant to crop productivity (2005) Philos. Trans. R. Soc. B Biol. Sci., 360, pp. 1999-2009 
504 |a Hutley, L.B., Beringer, J., Isaac, P.R., Hacker, J.M., Cernusak, L.A., A sub-continental scale living laboratory: spatial patterns of savanna vegetation over a rainfall gradient in northern Australia (2011) Agric. For. Meteorol., 151, pp. 1417-1428 
504 |a Isaac, P., Cleverly, J., McHugh, I., van Gorsel, E., Ewenz, C., Beringer, J., OzFlux data: network integration from collection to curation (2017) Biogeosciences, 14, pp. 2903-2928 
504 |a Jensen, N.O., Hummelshøj, P., Derivation of canopy resistance for water vapour fluxes over a spruce forest, using a new technique for the viscous sublayer resistance (1995) Agric. For. Meteorol., Biospheric Aspects of the Hydrological Cycle, 73, pp. 339-352 
504 |a Jiang, C., Ryu, Y., Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulator (BESS) (2016) Remote Sens. Environ., 186, pp. 528-547 
504 |a Kalma, J.D., McVicar, T.R., McCabe, M.F., Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data (2008) Surv. Geophys., 29, pp. 421-469 
504 |a Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Joseph, D., The NCEP/NCAR 40-Year reanalysis project (1996) Bull. Am. Meteorol. Soc., 77, pp. 437-471 
504 |a Kanniah, K.D., Beringer, J., Hutley, L., Exploring the link between clouds, radiation, and canopy productivity of tropical savannas (2011) Agric. For. Meteorol. 
504 |a Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., World Map of the Köppen-Geiger climate classification updated (2006) Meteorol. Z., pp. 259-263 
504 |a Li, R., Min, Q., Lin, B., Estimation of evapotranspiration in a mid-latitude forest using the Microwave Emissivity Difference Vegetation Index (EDVI) (2009) Remote Sens. Environ., 113, pp. 2011-2018 
504 |a Liu, D., Song, K., Townshend, J.R.G., Gong, P., Using local transition probability models in Markov random fields for forest change detection (2008) Remote Sens. Environ., 112, pp. 2222-2231 
504 |a McNaughton, K.G., Van Den Hurk, B.J.J.M., A ‘Lagrangian’ revision of the resistors in the two-layer model for calculating the energy budget of a plant canopy (1995) Bound.-Layer Meteorol., 74, pp. 261-288 
504 |a Monteith, J.L., Evaporation from land surfaces: progress in analysis and prediction since 1948 (1985) Advances in Evapotranspiration. Presented at the Proceedings of the ASAE Conference on Evapotranspiration, pp. 4-12 
504 |a Moran, M.S., Jackson, R.D., Assessing the spatial distribution of evapotranspiration using remotely sensed inputs (1991) J. Environ. Qual., 20, p. 725 
504 |a Mu, Q., Heinsch, F.A., Zhao, M., Running, S.W., Development of a global evapotranspiration algorithm based on MODIS and global meteorology data (2007) Remote Sens. Environ., 111, pp. 519-536 
504 |a Nagler, P.L., Scott, R.L., Westenburg, C., Cleverly, J.R., Glenn, E.P., Huete, A.R., Evapotranspiration on western US rivers estimated using the enhanced vegetation index from MODIS and data from eddy covariance and Bowen ratio flux towers (2005) Remote Sens. Environ., 97, pp. 337-351 
504 |a Oke, T.R., Boundary Layer Climates (1988), 2nd ed. Routledge London; Restrepo-Coupe, N., da Rocha, H.R., Hutyra, L.R., da Araujo, A.C., Borma, L.S., Christoffersen, B., Cabral, O.M.R., Saleska, S.R., What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network (2013) Agric. For. Meteorol., 182-183, pp. 128-144 
504 |a Restrepo-Coupe, N., Huete, A., Davies, K., Cleverly, J., Beringer, J., Eamus, D., van Gorsel, E., Meyer, W.S., MODIS vegetation products as proxies of photosynthetic potential: a look across meteorological and biologic driven ecosystem productivity (2015) Biogeosci. Discuss., 12, pp. 19213-19267 
504 |a Rodell, M., Houser, P.R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Toll, D., The global land data assimilation system (2004) Bull. Am. Meteorol. Soc., 85, pp. 381-394 
504 |a Ryu, Y., Baldocchi, D.D., Kobayashi, H., van Ingen, C., Li, J., Black, T.A., Beringer, J., Roupsard, O., Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales (2011) Glob. Biogeochem. Cycles, 25. , GB4017 
504 |a Sabater, J.M., Jarlan, L., Calvet, J.-C., Bouyssel, F., De Rosnay, P., From near-surface to root-zone soil moisture using different assimilation techniques (2007) J. Hydrometeorol., 8, pp. 194-206 
504 |a Schubert, S.D., Rood, R.B., Pfaendtner, J., An assimilated dataset for earth science applications (1993) Bull. Am. Meteorol. Soc., 74, pp. 2331-2342 
504 |a Taylor, J.A., Tulloch, D., Rainfall in the wet-dry tropics: extreme events at Darwin and similarities between years during the period 1870–1983 inclusive (1985) Aust. J. Ecol., 10, pp. 281-295 
504 |a Xu, T., Bateni, S.M., Liang, S., Entekhabi, D., Mao, K., Estimation of surface turbulent heat fluxes via variational assimilation of sequences of land surface temperatures from Geostationary Operational Environmental Satellites (2014) J. Geophys. Res. Atmos., 119 (2014) 
504 |a Xu, T., Bateni, S.M., Margulis, S.A., Song, L., Liu, S., Xu, Z., Partitioning evapotranspiration into soil evaporation and canopy transpiration via a two-source variational data assimilation system (2016) J. Hydrometeorol., 17, pp. 2353-2370 
504 |a Yebra, M., Dennison, P.E., Chuvieco, E., Riaño, D., Zylstra, P., Hunt, E.R., Danson, F.M., Jurdao, S., Remote Sensing of Environment A global review of remote sensing of live fuel moisture content for fi re danger assessment : Moving towards operational products (2013) Remote Sens. Environ., 136, pp. 455-468 
504 |a Zhang, K., Kimball, J.S., Nemani, R.R., Running, S.W., A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006 (2010) Water Resour. Res., 46 
506 |2 openaire  |e Política editorial 
520 3 |a In this study, the performance of the combined-source variational data assimilation scheme (CS-VDA) is assessed in detail using in situ heat fluxes (i.e. sensible heat (H) and latent heat (LE)) collected at a Eucalypt forest savanna of Northern Australia (Howard Springs). The CS VDA scheme estimates surface turbulent heat fluxes via assimilation of sequences of land surface temperature (LST) and meteorological data into a surface energy balance model and a dynamic model. The main objectives of this paper were to extend previous studies to a semi-arid ecosystem and to evaluate the potential of using global meteorological forcing data (GMD) to drive the CS VDA model (rather than in-situ meteorological observations). In order to study the new errors associated with the use of GMD, the effects on LE of the uncertainty in air temperature and wind speed (the two key meteorological factors that controls the total estimation error) was quantitatively characterized. Using hourly in-situ measurements as inputs, the daily-averaged LE RMSE daily was 54 W/m 2 , which agrees with the errors previously reported in the literature. As expected, replacing local meteorological data with GMD reduces the performance of the LE estimation (GMA: RMSE daily = 82 W/m 2 , GLDAS: RMSE daily = 151 W/m 2 ). However, LE RMSE values at 8-day temporal scale for GMA are RMSE 8-days = 32 W/m 2 , similar to those reported in this area for other models (MODIS (MOD16A2) and Breathing Earth System Simulator (BESS)). The error propagation analysis indicate that the CS VDA model is very sensitive to uncertainties in wind speed measurements. Moreover, there are large discrepancies between in situ and GMD wind speed. These two factors combined can explain the degradation in LE estimations. In this context, our study is a first step towards the characterization of an operational daily LE estimation scheme using hourly LST observations. © 2019 Elsevier B.V.  |l eng 
593 |a Instituto de Astronomía y Física del Espacio (IAFE-UBA-CONICET), Cdad. Universitaria, CABA, Buenos Aires, Argentina 
593 |a Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States 
593 |a School of Life Sciences, University of Technology of Sydney, Sydney, NSW, Australia 
593 |a Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, United States 
593 |a Department of Atmospheric and Ocean Sciences, FCEyN, UBA, CABA, Piso 2, Pabellón 2, Cdad. UniversitariaC1428EGA, Argentina 
651 4 |a AUSTRALIA 
690 1 0 |a LATENT HEAT FLUX 
690 1 0 |a REMOTE SENSING 
690 1 0 |a SAVANNA 
690 1 0 |a VARIATIONAL DATA ASSIMILATION 
690 1 0 |a AIR TEMPERATURE 
690 1 0 |a DATA ASSIMILATION 
690 1 0 |a DECIDUOUS FOREST 
690 1 0 |a ENERGY BALANCE 
690 1 0 |a LAND SURFACE 
690 1 0 |a LATENT HEAT FLUX 
690 1 0 |a REMOTE SENSING 
690 1 0 |a SAVANNA 
690 1 0 |a SEMIARID REGION 
690 1 0 |a SURFACE TEMPERATURE 
690 1 0 |a WIND VELOCITY 
690 1 0 |a HOWARD SPRINGS 
690 1 0 |a NORTHERN TERRITORY 
700 1 |a Grings, Francisco Matías 
700 1 |a Franco, Mariano Andrés 
700 1 |a Douna, V. 
700 1 |a Entekhabi, D. 
700 1 |a Restrepo-Coupe, N. 
700 1 |a Huete, A. 
700 1 |a Gassmann, M. 
700 1 |a Roitberg, E. 
773 0 |d Elsevier B.V., 2019  |g v. 268  |h pp. 341-353  |p Agric. For. Meterol.  |x 01681923  |w (AR-BaUEN)CENRE-70  |t Agricultural and Forest Meteorology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060999409&doi=10.1016%2fj.agrformet.2019.01.032&partnerID=40&md5=084c99a176065caeb70aebfee0184d08  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.agrformet.2019.01.032  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01681923_v268_n_p341_Barraza  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01681923_v268_n_p341_Barraza  |y Registro en la Biblioteca Digital 
961 |a paper_01681923_v268_n_p341_Barraza  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86550