Pseudomonadic BL-algebras: an algebraic approach to possibilistic BL-logic

Fuzzy possibilistic logic is an important formalism for approximate reasoning. It extends the well-known basic propositional logic BL, introduced by Hájek, by offering the ability to reason about possibility and necessity of fuzzy propositions. We consider an algebraic approach to study this logic,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Busaniche, M.
Otros Autores: Cordero, P., Rodriguez, R.O
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Verlag 2019
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06886caa a22007577a 4500
001 PAPER-25593
003 AR-BaUEN
005 20230518205740.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85061488156 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Busaniche, M. 
245 1 0 |a Pseudomonadic BL-algebras: an algebraic approach to possibilistic BL-logic 
260 |b Springer Verlag  |c 2019 
270 1 0 |m Cordero, P.; IMAL, CONICET-UNL.Argentina; email: pcordero@santafe-conicet.gov.ar 
506 |2 openaire  |e Política editorial 
504 |a Bezhanishvili, N., Pseudomonadic algebras as algebraic models of Doxastic modal logic (2002) Math Log Q, 48, pp. 624-636 
504 |a Bou, F., Esteva, F., Godo, L., Rodriguez, R., On the minimum many-valued modal logic over a finite residuated lattice (2011) J Log Comput, 21, pp. 739-790 
504 |a Bou, F., Esteva, F., Godo, L., Rodriguez, R., Possibilistic semantics for a modal K D 45 extension of Gödel fuzzy logic (2016) IPMU 2016, Eindhoven, the Netherlands, 20–24 June 2016, Proceedings, Part II. Communications in Computer and Information Science, 611. , Springer 
504 |a Busaniche, M., Montagna, F., Hájek’s logic BL and BL-algebras (2011) Handbook of mathematical fuzzy logic, volume 1 of studies in logic, mathematical logic and foundations, 1, pp. 355-447. , College Publications, London 
504 |a Caicedo, X., Rodriguez, R., Bi-modal Gödel logic over [0,1]-valued Kripke frames (2015) J Log Comput, 25, pp. 37-55 
504 |a Castaño, D., Cimadamore, C., Díaz Varela, P., Rueda, L., Monadic BL-algebras: the equivalent algebraic semantics of Hájek’s monadic fuzzy logic (2017) Fuzzy Sets Syst, 320, pp. 40-59 
504 |a Cignoli, R., Torrens, A., An algebraic analysis of product logic (2000) Mult Valued Log, 5, pp. 45-65 
504 |a Cignoli, R., D’Ottaviano, I., Mundici, D., (2000) Algebraic foundations of many-valued reasoning, 7. , Kluwer Academic Publishers, Dordrecht: Trends Logic 
504 |a Dubois, D., Prade, H., Possibilistic logic: a retrospective and prospective view (2004) Fuzzy Sets Syst, 144, pp. 3-23 
504 |a Dubois, D., Land, J., Prade, H., Possibilistic logic (1994) Handbook of logic in artificial intelligence and logic programing, non-monotonic reasoning and uncertain reasoning, 3, pp. 439-513. , Gabbay, (ed), Oxford University Press, Oxford 
504 |a Fitting, M., Many valued modal logics (1991) Fundam Inform, 15, pp. 254-325 
504 |a Fitting, M., Many valued modal logics II (1992) Fundam Inform, 17, pp. 55-73 
504 |a Galatos, N., Jipsen, P., Kowalski, T., Ono, H., (2007) Residuated lattices: an algebraic glimpse at substructural logics, volume 151 of studies in logic and the foundation of mathematics, , Elsevier, Amsterdam 
504 |a Hájek, P., (1998) Metamathematics of fuzzy logic. Trends in logic, , Kluwer, Dordrecht 
504 |a Hájek, P., Harmancová, D., Verbrugge, R., A qualitative fuzzy probabilistic logic (1995) J Approx Reason, 12, pp. 1-19 
504 |a Hintikka, J., Knowledge and belief. An introduction to the logic of the two notions (1962) Stud Log, 16, pp. 119-122 
520 3 |a Fuzzy possibilistic logic is an important formalism for approximate reasoning. It extends the well-known basic propositional logic BL, introduced by Hájek, by offering the ability to reason about possibility and necessity of fuzzy propositions. We consider an algebraic approach to study this logic, introducing Pseudomonadic BL-algebras. These algebras turn to be a generalization of both Pseudomonadic algebras introduced by Bezhanishvili (Math Log Q 48:624–636, 2002) and serial, Euclidean and transitive Bimodal Gödel algebras proposed by Caicedo and Rodriguez (J Log Comput 25:37–55, 2015). We present the connection between this class of algebras and possibilistic BL-frames, as a first step to solve an open problem proposed by Hájek (Metamathematics of fuzzy logic. Trends in logic, Kluwer, Dordrecht, 1998, Chap. 8, Sect. 3). © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.  |l eng 
536 |a Detalles de la financiación: 689176 
536 |a Detalles de la financiación: Horizon 2020 
536 |a Detalles de la financiación: CAI+D PIC 50420150100090LI 
536 |a Detalles de la financiación: Universidad Nacional del Litoral, UBA-CyT 20020150100002BA, PICT/O N◦ 2016-0215 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Acknowledgements The authors thank the referees for their comments that helped improve the paper. The authors were funded by the research project PIP 112-20150100412CO, CONICET, Desarrollo de Herramientas Algebraicas y Topológicas para el Estudio de Lóg-icas de la Incertidumbre y la Vaguedad. DHATELIV. M. Busaniche and Penélope Cordero were also funded by the project CAI+D PIC 50420150100090LI, UNL, Métodos algebraico-geométricos en la teoría de la información. Additionally, the author P. Cordero was supported by a CONICET grant during the preparation of the paper. R. O. Rodriguez was also funded by the projects UBA-CyT 20020150100002BA and PICT/O N◦ 2016-0215. The authors have been funded by the Horizon 2020 project of the European Commission 689176–SYSMICS. 
593 |a IMAL, CONICET-UNL. FIQ, UNL, Santa Fe, Argentina 
593 |a IMAL, CONICET-UNL., Santa Fe, Argentina 
593 |a ICC, CONICET-UBA. DC, FCEyN, UBA, Buenos Aires, Argentina 
690 1 0 |a BL-ALGEBRAS 
690 1 0 |a FUZZY POSSIBILISTIC LOGIC 
690 1 0 |a MODAL ALGEBRAS 
690 1 0 |a COMPUTER CIRCUITS 
690 1 0 |a ALGEBRAIC APPROACHES 
690 1 0 |a APPROXIMATE REASONING 
690 1 0 |a BL-ALGEBRA 
690 1 0 |a BL-LOGIC 
690 1 0 |a EUCLIDEAN 
690 1 0 |a POSSIBILISTIC 
690 1 0 |a POSSIBILISTIC LOGIC 
690 1 0 |a PROPOSITIONAL LOGIC 
690 1 0 |a FUZZY LOGIC 
650 1 7 |2 spines  |a ALGEBRA 
700 1 |a Cordero, P. 
700 1 |a Rodriguez, R.O. 
773 0 |d Springer Verlag, 2019  |g v. 23  |h pp. 2199-2212  |k n. 7  |p Soft Comput.  |x 14327643  |t Soft Computing 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061488156&doi=10.1007%2fs00500-019-03810-0&partnerID=40&md5=c4002654b8c16e16b1f248377450d76c  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00500-019-03810-0  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_14327643_v23_n7_p2199_Busaniche  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14327643_v23_n7_p2199_Busaniche  |y Registro en la Biblioteca Digital 
961 |a paper_14327643_v23_n7_p2199_Busaniche  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86546