Conformation-independent quantitative structure-property relationships study on water solubility of pesticides

Water solubility is a key physicochemical parameter in pesticide control and regulation, although sometimes its experimental determination is not an easy task. In this study, we present Quantitative Structure-Property Relationships (QSPRs) for predicting the water solubility at 20 °C of 1211 approve...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Fioressi, S.E
Otros Autores: Bacelo, D.E, Rojas, C., Aranda, J.F, Duchowicz, P.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Academic Press 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13462caa a22012377a 4500
001 PAPER-25591
003 AR-BaUEN
005 20230518205740.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85059200943 
024 7 |2 cas  |a water, 7732-18-5; Pesticides; Water 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a EESAD 
100 1 |a Fioressi, S.E. 
245 1 0 |a Conformation-independent quantitative structure-property relationships study on water solubility of pesticides 
260 |b Academic Press  |c 2019 
270 1 0 |m Fioressi, S.E.; Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano, Villanueva 1324, Argentina; email: sfioressi@yahoo.com 
506 |2 openaire  |e Política editorial 
504 |a (2017), Agency, USEP Finalization of Guidance on Incorporation of Water Treatment Effects on Pesticide Removal and Transformations in Drinking Water Exposure Assessments; Ali, J., Camilleri, P., Brown, M.B., Hutt, A.J., Kirton, S.B., In silico prediction of aqueous solubility using simple QSPR models: the importance of phenol and phenol-like moieties (2012) J. Chem. Inf. Model., 52, pp. 2950-2957 
504 |a Ali, J., Camilleri, P., Brown, M.B., Hutt, A.J., Kirton, S.B., Revisiting the general solubility equation: in silico prediction of aqueous solubility incorporating the effect of topographical polar surface area (2012) J. Chem. Inf. Model., 52, pp. 420-428 
504 |a Bhhatarai, B., Gramatica, P., Prediction of aqueous solubility, vapor pressure and critical micelle concentration for aquatic partitioning of perfluorinated chemicals (2010) Environ. Sci. Technol., 45, pp. 8120-8128 
504 |a Cappelli, C.I., Manganelli, S., Lombardo, A., Gissi, A., Benfenati, E., Validation of quantitative structure–activity relationship models to predict water-solubility of organic compounds (2013) Sci. Total Environ., 463, pp. 781-789 
504 |a Clarke, E.D., Delaney, J.S., Physical and molecular properties of agrochemicals: an analysis of screen inputs, hits, leads, and products (2003) CHIMIA Int. J. Chem., 57, pp. 731-734 
504 |a Cronin, M.T.D., Livingstone, D.J., Predicting Chemical Toxicity and Fate (2004), CRC press Boca Raton; Das, R.N., Roy, K., QSPR with extended topochemical atom (ETA) indices. 4. Modeling aqueous solubility of drug like molecules and agrochemicals following OECD guidelines (2013) Struct. Chem., 24, pp. 303-331 
504 |a Delaney, J.S., ESOL: estimating aqueous solubility directly from molecular structure (2004) J. Chem. Inf. Comput. Sci., 44, pp. 1000-1005 
504 |a Duchowicz, P.R., Castro, E.A., Fernández, F.M., Alternative algorithm for the search of an optimal set of descriptors in QSAR-QSPR studies (2006) MATCH Commun. Math. Comput. Chem., 55, pp. 179-192 
504 |a Duchowicz, P.R., Comelli, N.C., Ortiz, E.V., Castro, E.A., QSAR study for carcinogenicity in a large set of organic compounds (2012) Curr. Drug Saf., 7, pp. 282-288 
504 |a Duchowicz, P.R., Fioressi, S.E., Bacelo, D.E., Saavedra, L.M., Toropova, A.P., Toropov, A.A., QSPR studies on refractive indices of structurally heterogeneous polymers (2015) Chemom. Intell. Lab. Syst., 140, pp. 86-91 
504 |a Duchowicz, P.R., Fioressi, S.E., Castro, E., Wróbel, K., Ibezim, N.E., Bacelo, D.E., Conformation‐Independent QSAR Study on Human Epidermal Growth Factor Receptor‐2 (HER2) Inhibitors (2017) ChemistrySelect, 2, pp. 3725-3731 
504 |a Eriksson, L., Jaworska, J., Worth, A.P., Cronin, M.T., McDowell, R.M., Gramatica, P., Methods for reliability and uncertainty assessment and for applicability evaluations of classification-and regression-based QSARs (2003) Environ. Health Perspect., 111, p. 1361 
504 |a Gadaleta, D., Mangiatordi, G.F., Catto, M., Carotti, A., Nicolotti, O., Applicability domain for QSAR models: where theory meets reality (2016) Int. J. Quant. Struct.-Prop. Relatsh., 1, pp. 45-63 
504 |a Golbraikh, A., Tropsha, A., Beware of q2! (2002) J. Mol. Graph Model, 20, pp. 269-276 
504 |a Gramatica, P., Principles of QSAR models validation: internal and external (2007) QSAR Comb. Sci., 26, pp. 694-701 
504 |a Hamadache, M., Amrane, A., Benkortbi, O., Hanini, S., Khaouane, L., Moussa, C.S., Environmental Toxicity of Pesticides, and its Modeling by Qsar Approaches, Advances in QSAR Modeling (2017), pp. 471-501. , Springer Cham; Hamilton, D., Ambrus, A., Dieterle, R., Felsot, A., Harris, C., Holland, P., Katayama, A., Unsworth, J., Regulatory limits for pesticide residues in water (IUPAC Technical Report) (2003) Pure Appl. Chem., 75, pp. 1123-1155 
504 |a Hong, H., Xie, Q., Ge, W., Qian, F., Fang, H., Shi, L., Su, Z., Tong, W., Mold2, molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics (2008) J. Chem. Inf. Model., 48, pp. 1337-1344 
504 |a Kim, M., Li, L.Y., Grace, J.R., Predictability of physicochemical properties of polychlorinated dibenzo-p-dioxins (PCDDs) based on single-molecular descriptor models (2016) Environ. Pollut., 213, pp. 99-111 
504 |a Lewis, K., Green, A., Tzilivakis, J., Warner, D., The pesticide properties database (ppdb) developed by the agriculture & environment research unit (AERU) (2018) Univ. Herts., pp. 2006-2018 
504 |a Mas, S., de Juan, A., Tauler, R., Olivieri, A.C., Escandar, G.M., Application of chemometric methods to environmental analysis of organic pollutants: a review (2010) Talanta, 80, pp. 1052-1067 
504 |a (2007), OECD Guidance Document On The Validation of (Quantitative) Structure-Activity Relationship [(Q)Sar] Models, Environment Health and Safety Publications Series on Testing and Assesment No. 69; Ran, Y., He, Y., Yang, G., Johnson, J.L., Yalkowsky, S.H., Estimation of aqueous solubility of organic compounds by using the general solubility equation (2002) Chemosphere, 48, pp. 487-509 
504 |a Rojas, C., Duchowicz, P.R., Tripaldi, P., Diez, R.P., QSPR analysis for the retention index of flavors and fragrances on a OV-101 column (2015) Chemom. Intell. Lab. Syst., 140, pp. 126-132 
504 |a Roy, K., On some aspects of validation of predictive quantitative structure–activity relationship models (2007) Expert Opin. Drug Discov., 2, pp. 1567-1577 
504 |a Talevi, A., Bellera, C.L., Di Ianni, M., Duchowicz, P.R., Bruno-Blanch, L.E., Castro, E.A., An integrated drug development approach applying topological descriptors (2012) Curr. Comput. Aided Drug Des., 8, pp. 172-181 
504 |a Tebes-Stevens, C., Patel, J.M., Koopmans, M., Olmstead, J., Hilal, S.H., Pope, N., Weber, E.J., Wolfe, K., Demonstration of a consensus approach for the calculation of physicochemical properties required for environmental fate assessments (2018) Chemosphere, 194, pp. 94-106 
504 |a Toropov, A.A., Toropova, A.P., Benfenati, E., Gini, G., Leszczynska, D., Leszczynski, J., CORAL: QSPR model of water solubility based on local and global SMILES attributes (2013) Chemosphere, 90, pp. 877-880 
504 |a Toropov, A.A., Toropova, A.P., Benfenati, E., Nicolotti, O., Carotti, A., Nesmerak, K., Veselinović, A.M., Bacelo, D., QSPR/QSAR analyses by means of the CORAL software: results, challenges, perspectives, pharmaceutical sciences: breakthroughs in research and practice (2017) IGI Glob., pp. 929-955 
504 |a Toropova, A., Toropov, A., Martyanov, S., Benfenati, E., Gini, G., Leszczynska, D., Leszczynski, J., CORAL: QSAR modeling of toxicity of organic chemicals towards Daphnia magna (2012) Chemom. Intell. Lab. Syst., 110, pp. 177-181 
504 |a Verma, R.P., Hansch, C., An approach toward the problem of outliers in QSAR (2005) Bioorg. Med. Chem., 13, pp. 4597-4621 
504 |a Villaverde, J.J., Sevilla-Morán, B., López-Goti, C., Alonso-Prados, J.L., Sandín-España, P., Computational methodologies for the risk assessment of pesticides in the European Union (2017) J. Agric. Food Chem., 65, pp. 2017-2018 
504 |a Villaverde, J.J., Sevilla-Morán, B., López-Goti, C., Alonso-Prados, J.L., Sandín-España, P., Considerations of nano-QSAR/QSPR models for nanopesticide risk assessment within the European legislative framework (2018) Sci. Total Environ., 634, pp. 1530-1539 
504 |a Wilczyńska-Piliszek, A.J., Piliszek, S., Falandysz, J., QSAR and ANN for the estimation of water solubility of 209 polychlorinated trans-azobenzenes (2012) J. Environ. Sci. Health, Part A, 47, pp. 155-166 
504 |a Wishart, D.S., Feunang, Y.D., Marcu, A., Guo, A.C., Liang, K., Vázquez-Fresno, R., Sajed, T., Karu, N., HMDB 4.0: the human metabolome database for 2018 (2017) Nucleic Acids Res., 46, pp. D608-D617 
504 |a Wold, S., Eriksson, L., Clementi, S., Statistical validation of QSAR results (1995) Chemom. Methods Mol. Des., pp. 309-338 
504 |a Yap, C.W., PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints (2011) J. Comput. Chem., 32, pp. 1466-1474 
504 |a Zeng, X.-L., Wang, H.-J., Wang, Y., QSPR models of n-octanol/water partition coefficients and aqueous solubility of halogenated methyl-phenyl ethers by DFT method (2012) Chemosphere, 86, pp. 619-625 
520 3 |a Water solubility is a key physicochemical parameter in pesticide control and regulation, although sometimes its experimental determination is not an easy task. In this study, we present Quantitative Structure-Property Relationships (QSPRs) for predicting the water solubility at 20 °C of 1211 approved heterogeneous pesticide compounds, collected from the online Pesticides Properties Data Base (PPDB). Validated and generally applicable Multivariable Linear Regression (MLR) models were established, including molecular descriptors carrying constitutional and topological aspects of the analyzed compounds. The most representative descriptors were selected from the exploration of a large number of about 18,000 structural variables. A hybrid approach that involves a molecular descriptor, a fingerprint, and a flexible descriptor showed the best predictive performance. © 2018 Elsevier Inc.  |l eng 
536 |a Detalles de la financiación: Ministry of Education, Culture, Sports, Science and Technology 
536 |a Detalles de la financiación: National Council for Scientific Research 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET PIP0311 
536 |a Detalles de la financiación: We are grateful to the National Scientific and Technical Research Council of Argentina ( Consejo Nacional de Investigaciones Científicas y Técnicas , CONICET PIP0311 project); to the National University of La Plata (Argentina) for financial support; and also to the Ministry of Education, Culture, Science and Technology (Argentina) for electronic library facilities. SEF, DEB and PRD are research members of CONICET. 
593 |a Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano, Villanueva 1324, Buenos Aires, CP 1426, Argentina 
593 |a Facultad de Ciencia y Tecnología, Universidad del Azuay, Av. 24 de Mayo 7-77 y Hernán Malo, Cuenca, Ecuador 
593 |a Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, UNLP, Diag. 113 y 64, C.C. 16, Sucursal 4, La Plata, 1900, Argentina 
690 1 0 |a CORAL SOFTWARE 
690 1 0 |a MOLECULAR DESCRIPTORS 
690 1 0 |a PESTICIDES 
690 1 0 |a QUANTITATIVE STRUCTURE-PROPERTY RELATIONSHIPS 
690 1 0 |a WATER SOLUBILITY 
690 1 0 |a PESTICIDE 
690 1 0 |a PESTICIDE 
690 1 0 |a WATER 
690 1 0 |a MOLECULAR ANALYSIS 
690 1 0 |a PESTICIDE RESIDUE 
690 1 0 |a PHYSICOCHEMICAL PROPERTY 
690 1 0 |a QUANTITATIVE ANALYSIS 
690 1 0 |a REGRESSION ANALYSIS 
690 1 0 |a SOFTWARE 
690 1 0 |a SOLUBILITY 
690 1 0 |a ARTICLE 
690 1 0 |a CHEMICAL STRUCTURE 
690 1 0 |a CONFORMATION 
690 1 0 |a MULTIPLE LINEAR REGRESSION ANALYSIS 
690 1 0 |a QUANTITATIVE STRUCTURE PROPERTY RELATION 
690 1 0 |a SOLUBILITY 
690 1 0 |a CHEMISTRY 
690 1 0 |a QUANTITATIVE STRUCTURE ACTIVITY RELATION 
690 1 0 |a SOLUBILITY 
690 1 0 |a STATISTICAL MODEL 
690 1 0 |a LINEAR MODELS 
690 1 0 |a MOLECULAR CONFORMATION 
690 1 0 |a PESTICIDES 
690 1 0 |a QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP 
690 1 0 |a SOLUBILITY 
690 1 0 |a WATER 
700 1 |a Bacelo, D.E. 
700 1 |a Rojas, C. 
700 1 |a Aranda, J.F. 
700 1 |a Duchowicz, P.R. 
773 0 |d Academic Press, 2019  |g v. 171  |h pp. 47-53  |p Ecotoxicol. Environ. Saf.  |x 01476513  |w (AR-BaUEN)CENRE-4483  |t Ecotoxicology and Environmental Safety 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059200943&doi=10.1016%2fj.ecoenv.2018.12.056&partnerID=40&md5=a1fddc27897bee6b9934875a2783a8f0  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.ecoenv.2018.12.056  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01476513_v171_n_p47_Fioressi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01476513_v171_n_p47_Fioressi  |y Registro en la Biblioteca Digital 
961 |a paper_01476513_v171_n_p47_Fioressi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 86544