Inhomogeneous minimization problems for the p(x)-Laplacian

This paper is devoted to the study of inhomogeneous minimization problems associated to the p(x)-Laplacian. We make a thorough analysis of the essential properties of their minimizers and we establish a relationship with a suitable free boundary problem. On the one hand, we study the problem of mini...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lederman, C.
Otros Autores: Wolanski, N.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Academic Press Inc. 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09784caa a22007577a 4500
001 PAPER-25561
003 AR-BaUEN
005 20230518205738.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85061814821 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Lederman, C. 
245 1 0 |a Inhomogeneous minimization problems for the p(x)-Laplacian 
260 |b Academic Press Inc.  |c 2019 
270 1 0 |m Wolanski, N.; IMAS, CONICET, Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresArgentina; email: wolanski@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Aboulaich, R., Meskine, D., Souissi, A., New diffusion models in image processing (2008) Comput. Math. Appl., 56, pp. 874-882 
504 |a Alt, H.W., Caffarelli, L.A., Existence and regularity for a minimum problem with free boundary (1981) J. Reine Angew. Math., 325, pp. 105-144 
504 |a Alt, H.W., Caffarelli, L.A., Friedman, A., A free boundary problem for quasilinear elliptic equations (1984) Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 11 (1), pp. 1-44 
504 |a Berestycki, H., Caffarelli, L.A., Nirenberg, L., Uniform estimates for regularization of free boundary problems (1990) Analysis and Partial Differential Equations, Lect. Notes Pure Appl. Math., 122, pp. 567-619. , Cora Sadosky Marcel Dekker New York 
504 |a Bonder, J.F., Martínez, S., Wolanski, N., A free boundary problem for the p(x)-Laplacian (2010) Nonlinear Anal., 72, pp. 1078-1103 
504 |a Caffarelli, L.A., Lederman, C., Wolanski, N., Uniform estimates and limits for a two phase parabolic singular perturbation problem (1997) Indiana Univ. Math. J., 46 (2), pp. 453-490 
504 |a Caffarelli, L.A., Lederman, C., Wolanski, N., Pointwise and viscosity solutions for the limit of a two phase parabolic singular perturbation problem (1997) Indiana Univ. Math. J., 46 (3), pp. 719-740 
504 |a Caffarelli, L.A., Salsa, S., A Geometric Approach to Free Boundary Problems (2005), Amer. Math. Soc. Providence, RI; Caffarelli, L.A., Vazquez, J.L., A free boundary problem for the heat equation arising in flame propagation (1995) Trans. Amer. Math. Soc., 347, pp. 411-441 
504 |a Chen, Y., Levine, S., Rao, M., Variable exponent, linear growth functionals in image restoration (2006) SIAM J. Appl. Math., 66, pp. 1383-1406 
504 |a Danielli, D., Petrosyan, A., A minimum problem with free boundary for a degenerate quasilinear operator (2005) Calc. Var. Partial Differential Equations, 23 (1), pp. 97-124 
504 |a Danielli, D., Petrosyan, A., Shahgholian, H., A singular perturbation problem for the p-Laplace operator (2003) Indiana Univ. Math. J., 52 (2), pp. 457-476 
504 |a Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M., Lebesque and Sobolev Spaces with Variable Exponents (2011) Lecture Notes in Math., 2017. , Springer 
504 |a Fan, X., Global C 1,α regularity for variable exponent elliptic equations in divergence form (2007) J. Differential Equations, 235, pp. 397-417 
504 |a Federer, H., Geometric Measure Theory (1969) Grundlehren Math. Wiss., 153. , Springer-Verlag New York Inc. New York 
504 |a Gustafsson, B., Shahgholian, H., Existence and geometric properties of solutions of a free boundary problem in potential theory (1996) J. Reine Angew. Math., 473, pp. 137-179 
504 |a Harjulehto, P., Hästö, P., Orlicz spaces and generalized Orlicz spaces (2018), http://cc.oulu.fi/~phasto/pp/orliczBook.pdf, Manuscript; Kováčik, O., Rákosník, J., On spaces L p(x) and W k,p(x) (1991) Czechoslovak Math. J., 41, pp. 592-618 
504 |a Lederman, C., A free boundary problem with a volume penalization (1996) Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 23 (2), pp. 249-300 
504 |a Lederman, C., Oelz, D., A quasilinear parabolic singular perturbation problem (2008) Interfaces Free Bound., 10 (4), pp. 447-482 
504 |a Lederman, C., Wolanski, N., Viscosity solutions and regularity of the free boundary for the limit of an elliptic two phase singular perturbation problem (1998) Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 27 (2), pp. 253-288 
504 |a Lederman, C., Wolanski, N., Singular perturbation in a nonlocal diffusion problem (2006) Comm. Partial Differential Equations, 31 (2), pp. 195-241 
504 |a Lederman, C., Wolanski, N., A two phase elliptic singular perturbation problem with a forcing term (2006) J. Math. Pures Appl., 86 (6), pp. 552-589 
504 |a Lederman, C., Wolanski, N., An inhomogeneous singular perturbation problem for the p(x)-Laplacian (2016) Nonlinear Anal., 138, pp. 300-325 
504 |a Lederman, C., Wolanski, N., Weak solutions and regularity of the interface in an inhomogeneous free boundary problem for the p(x)-Laplacian (2017) Interfaces Free Bound., 19 (2), pp. 201-241 
504 |a Maly, J., Ziemer, W.P., Fine Regularity of Solutions of Elliptic Partial Differential Equations (1997) Math. Surveys Monogr., 51. , American Mathematical Society Providence, RI 
504 |a Martínez, S., Wolanski, N., A minimum problem with free boundary in Orlicz spaces (2008) Adv. Math., 218 (6), pp. 1914-1971 
504 |a Martínez, S., Wolanski, N., A singular perturbation problem for a quasi-linear operator satisfying the natural growth condition of Lieberman (2009) SIAM J. Math. Anal., 40 (1), pp. 318-359 
504 |a Moreira, D., Wang, L., Singular perturbation method for inhomogeneous nonlinear free boundary problems (2014) Calc. Var. Partial Differential Equations, 49 (3&4), pp. 1237-1261 
504 |a Moreira, D., Wang, L., Hausdorff measure estimates and Lipschitz regularity in inhomogeneous nonlinear free boundary problems (2014) Arch. Ration. Mech. Anal., 213, pp. 527-559 
504 |a Radulescu, V.D., Repovs, D.D., Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis (2015) Monogr. Res. Notes in Math., 9. , Chapman & Hall/CRC Press Boca Raton, FL 
504 |a Ricarte, G., Teixeira, E., Fully nonlinear singularly perturbed equations and asymptotic free boundaries (2011) J. Funct. Anal., 261, pp. 1624-1673 
504 |a Ruzicka, M., Electrorheological Fluids: Modeling and Mathematical Theory (2000), Springer-Verlag Berlin; Weiss, G.S., A singular limit arising in combustion theory: fine properties of the free boundary (2003) Calc. Var. Partial Differential Equations, 17 (3), pp. 311-340 
504 |a Wolanski, N., Local bounds, Harnack inequality and Hölder continuity for divergence type elliptic equations with non-standard growth (2015) Rev. Un. Mat. Argentina, 56 (1), pp. 73-105 
520 3 |a This paper is devoted to the study of inhomogeneous minimization problems associated to the p(x)-Laplacian. We make a thorough analysis of the essential properties of their minimizers and we establish a relationship with a suitable free boundary problem. On the one hand, we study the problem of minimizing the functional J(v)=∫ Ω ([Formula presented]+λ(x)χ {v>0} +fv)dx. We show that nonnegative local minimizers u are solutions to the free boundary problem: u≥0 and (P(f,p,λ ⁎ )){Δ p(x) u:=div(|∇u(x)| p(x)−2 ∇u)=fin {u>0}u=0,|∇u|=λ ⁎ (x)on ∂{u>0} with λ ⁎ (x)=([Formula presented]λ(x)) 1/p(x) and that the free boundary is a C 1,α surface with the exception of a subset of H N−1 -measure zero. On the other hand, we study the problem of minimizing the functional J ε (v)=∫Ω([Formula presented]+B ε (v)+f ε v)dx, where B ε (s)=∫ 0 s β ε (τ)dτ ε>0, β ε (s)=[Formula presented]β([Formula presented]), with β a Lipschitz function satisfying β>0 in (0,1), β≡0 outside (0,1). We prove that if u ε are nonnegative local minimizers, then u ε are solutions to (P ε (f ε ,p ε ))Δ p ε (x) u ε =β ε (u ε )+f ε ,u ε ≥0. Moreover, if the functions u ε , f ε and p ε are uniformly bounded, we show that limit functions u (ε→0) are solutions to the free boundary problem P(f,p,λ ⁎ ) with λ ⁎ (x)=([Formula presented]M) 1/p(x) , M=∫β(s)ds, p=lim⁡p ε , f=lim⁡f ε , and that the free boundary is a C 1,α surface with the exception of a subset of H N−1 -measure zero. In order to obtain our results we need to overcome deep technical difficulties and develop new strategies, not present in the previous literature for this type of problems. © 2019 Elsevier Inc.  |l eng 
593 |a IMAS, CONICET, Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina 
690 1 0 |a FREE BOUNDARY PROBLEM 
690 1 0 |a INHOMOGENEOUS PROBLEM 
690 1 0 |a MINIMIZATION PROBLEM 
690 1 0 |a REGULARITY OF THE FREE BOUNDARY 
690 1 0 |a SINGULAR PERTURBATION 
690 1 0 |a VARIABLE EXPONENT SPACES 
700 1 |a Wolanski, N. 
773 0 |d Academic Press Inc., 2019  |g v. 475  |h pp. 423-463  |k n. 1  |p J. Math. Anal. Appl.  |x 0022247X  |w (AR-BaUEN)CENRE-271  |t Journal of Mathematical Analysis and Applications 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061814821&doi=10.1016%2fj.jmaa.2019.02.049&partnerID=40&md5=f6cac37dc2d69fa04801ef632d2f98d9  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jmaa.2019.02.049  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0022247X_v475_n1_p423_Lederman  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v475_n1_p423_Lederman  |y Registro en la Biblioteca Digital 
961 |a paper_0022247X_v475_n1_p423_Lederman  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 86514