A fractional Laplace equation: Regularity of solutions and finite element approximations

This paper deals with the integral version of the Dirichlet homogeneous fractional Laplace equation. For this problem weighted and fractional Sobolev a priori estimates are provided in terms of the Holder regularity of the data. By relying on these results, optimal order of convergence for the stand...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Acosta, G.
Otros Autores: Borthagaray, J.P
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Society for Industrial and Applied Mathematics Publications 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10304caa a22010697a 4500
001 PAPER-25504
003 AR-BaUEN
005 20230518205733.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85018971197 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a SJNAA 
100 1 |a Acosta, G. 
245 1 2 |a A fractional Laplace equation: Regularity of solutions and finite element approximations 
260 |b Society for Industrial and Applied Mathematics Publications  |c 2017 
270 1 0 |m Acosta, G.; IMAS - CONICET, Departamento de Matematica, Universidad de Buenos AiresArgentina; email: gacosta@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Acosta, G., Bersetche, F., Borthagaray, J.P., (2016) A Short FEM Implementation for A 2D Homogeneous Dirichlet Problem of A Fractional Laplacian, , preprint, arXiv:1610.05558v1 
504 |a Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M., Application of a fractional advection-dispersion equation (2000) Water Resources Res., 36, pp. 1403-1412 
504 |a Bertoin, J., (1996) Levy Processes, Cambridge Tracts in Math., , Cambridge University Press, Cambridge, UK 
504 |a Bogdan, K., Burdzy, K., Chen, Z.-Q., Censored stable processes (2003) Probab. Theory Related Fields, 127, pp. 89-152 
504 |a Borthagaray, J.P., Del Pezzo, L.M., Martínez, S., (2016) Finite Element Approximation for the Fractional Eigenvalue Problem, , preprint, arXiv:1603.00317 
504 |a Bourgain, J., Brezis, H., Mironescu, P., Another look at Sobolev spaces (2001) Optimal Control and Partial Differential Equations, pp. 439-455. , IOS Press, Amsterdam 
504 |a Brenner, S.C., Scott, L.R., The Mathematical Theory of Finite Element Methods (1994) Texts in Appl. Math., 15. , Springer-Verlag, New York 
504 |a Buades, A., Coll, B., Morel, J.M., Image denoising methods: A new nonlocal principle (2010) SIAM Rev., 52, pp. 113-147 
504 |a Caffarelli, L., Silvestre, L., An extension problem related to the fractional Laplacian (2007) Comm. Partial Differential Equations, 32, pp. 1245-1260 
504 |a Carbery, A., Maz'Ya, V., Mitrea, M., Rule, D., The integrability of negative powers of the solution of the Saint Venant problem (2014) Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13, pp. 465-531 
504 |a Carr, P., Geman, H., The fine structure of asset returns: An empirical investigation (2002) J. Business, 75, pp. 305-332. , https://EconPapers.repec.org/RePEc:ucp:jnlbus:v:75:y:2002:i:2:p:305-332 
504 |a Ciarlet, P., Analysis of the Scott-Zhang interpolation in the fractional order Sobolev spaces (2013) J. Numer. Math., 21, pp. 173-180 
504 |a Cont, R., Tankov, P., Financial Modelling with Jump Processes (2004) Chapman & Hall/CRC Financ. Math. Ser., , CRC Press, Boca Raton, FL 
504 |a Cushman, J.H., Ginn, T.R., Nonlocal dispersion in media with continuously evolving scales of heterogeneity (1993) Transport Porous Media, 13, pp. 123-138 
504 |a D'Elia, M., Gunzburger, M., The fractional laplacian operator on bounded domains as a special case of the nonlocal diffusion operator (2013) Comput. Math. Appl., 66, pp. 1245-1260 
504 |a Di Nezza, E., Palatucci, G., Valdinoci, E., Hitchhiker's guide to the fractional Sobolev spaces (2012) Bull. Sci. Math., 136, pp. 521-573 
504 |a Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K., A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws (2013) Math. Models Methods Appl. Sci., 23, pp. 493-540 
504 |a Dyda, B., A fractional order Hardy inequality (2004) Illinois J. Math., 48, pp. 575-588. , http://projecteuclid.org/euclid.ijm/1258138400 
504 |a Ervin, V.J., Roop, J.P., Variational formulation for the stationary fractional advection dispersion equation (2006) Numer. Methods Partial Differential Equations, 22, pp. 558-576 
504 |a Faermann, B., Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods. I. the two-dimensional case (2000) IMA J. Numer. Anal., 20, pp. 203-234 
504 |a Faermann, B., Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods. II. the three-dimensional case (2002) Numer. Math., 92, pp. 467-499 
504 |a Fiscella, A., Servadei, R., Valdinoci, E., Density properties for fractional Sobolev spaces (2015) Ann. Acad. Sci. Fenn. Math., 40, pp. 235-253 
504 |a Gatto, P., Hesthaven, J.S., Numerical approximation of the fractional Laplacian via hp-finite elements, with an application to image denoising (2014) J. Sci. Comput., 65 
504 |a Getoor, R.K., First passage times for symmetric stable processes in space (1961) Trans. Amer. Math. Soc., 101, pp. 75-90 
504 |a Gilboa, G., Osher, S., Nonlocal operators with applications to image processing (2008) Multiscale Model. Simul., 7, pp. 1005-1028 
504 |a Grisvard, P., Elliptic problems in nonsmooth domains (1985) Monogr. Stud. Math., 24. , Pitman, Boston, MA 
504 |a Grubb, G., Fractional laplacians on domains, a development of Hörmander's theory of μ-transmission pseudoDifferential operators (2015) Adv. Math., 268, pp. 478-528 
504 |a Huang, Y., Oberman, A.M., Numerical methods for the fractional laplacian: A finite difference-quadrature approach (2014) SIAM J. Numer. Anal., 52, pp. 3056-3084 
504 |a Hurri-Syrjänen, R., Vähäkangas, A.V., On fractional Poincare inequalities (2013) J. Anal. Math., 120, pp. 85-104 
504 |a Klafter, J., Sokolov, I.M., Anomalous diffusion spreads its wings (2005) Physics World, 18, p. 29 
504 |a Kufner, A., (1985) Weighted Sobolev Spaces, , Wiley-Interscience, New York 
504 |a Lions, J.L., Magenes, E., (2012) Non-Homogeneous Boundary Value Problems and Applications, 1. , Springer, New York 
504 |a Lou, Y., Zhang, X., Osher, S., Bertozzi, A., Image recovery via nonlocal operators (2010) J. Sci. Comput., 42, pp. 185-197 
504 |a Martio, O., Definitions for uniform domains (1980) Ann. Acad. Sci. Fenn. Ser. A i Math., 5, pp. 197-205 
504 |a McCay, B.M., Narasimhan, M.N.L., Theory of nonlocal electromagnetic uids (1981) Arch. Mech. (Arch. Mech. Stos.), 33, pp. 365-384 
504 |a Metzler, R., Klafter, J., The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics (2004) J. Phys. A, 37, pp. R161-R208 
504 |a Musina, R., Nazarov, A.I., On fractional Laplacians (2014) Comm. Partial Differential Equations, 39, pp. 1780-1790 
504 |a Nochetto, R.H., Otárola, E., Salgado, A.J., A PDE approach to fractional diffusion in general domains: A priori error analysis (2014) Found. Comput. Math., 15, pp. 733-791 
504 |a Ros-Oton, X., Serra, J., The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary (2014) J. Math. Pures Appl., 101, pp. 275-302 
504 |a Sauter, S.A., Schwab, C., Boundary Element Methods (2011) Springer Ser. Comput. Math., 39. , Springer-Verlag, Berlin 
504 |a Scott, L.R., Zhang, S., Finite element interpolation of nonsmooth functions satisfying boundary conditions (1990) Math. Comp., 54, pp. 483-493 
504 |a Servadei, R., Valdinoci, E., On the spectrum of two different fractional operators (2014) Proc. Roy. Soc. Edinburgh Sect. A, 144, pp. 831-855 
504 |a Silling, S.A., Reformulation of elasticity theory for discontinuities and long-range forces (2000) J. Mech. Phys. Solids, 48, pp. 175-209 
504 |a Stein, E.M., Singular integrals and differentiability properties of functions (1970) Princeton Math. Ser., 30. , Princeton University Press, Princeton, NJ 
504 |a Stinga, P.R., Torrea, J.L., Extension problem and Harnack's inequality for some fractional operators (2010) Comm. Partial Differential Equations, 35, pp. 2092-2122 
504 |a Valdinoci, E., From the long jump random walk to the fractional Laplacian (2009) Bol. Soc. Esp. Mat. Apl. SeMA, 49, pp. 33-44 
520 3 |a This paper deals with the integral version of the Dirichlet homogeneous fractional Laplace equation. For this problem weighted and fractional Sobolev a priori estimates are provided in terms of the Holder regularity of the data. By relying on these results, optimal order of convergence for the standard linear finite element method is proved for quasi-uniform as well as graded meshes. Some numerical examples are given showing results in agreement with the theoretical predictions. © by SIAM 2017.  |l eng 
593 |a IMAS - CONICET, Departamento de Matematica, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina 
690 1 0 |a FINITE ELEMENTS 
690 1 0 |a FRACTIONAL LAPLACIAN 
690 1 0 |a GRADED MESHES 
690 1 0 |a WEIGHTED FRACTIONAL NORMS 
690 1 0 |a INTEGRODIFFERENTIAL EQUATIONS 
690 1 0 |a LAPLACE EQUATION 
690 1 0 |a LAPLACE TRANSFORMS 
690 1 0 |a NONLINEAR EQUATIONS 
690 1 0 |a POISSON EQUATION 
690 1 0 |a A-PRIORI ESTIMATES 
690 1 0 |a FINITE ELEMENT APPROXIMATIONS 
690 1 0 |a FRACTIONAL LAPLACIAN 
690 1 0 |a GRADED MESHES 
690 1 0 |a LINEAR FINITE ELEMENTS 
690 1 0 |a OPTIMAL ORDER OF CONVERGENCE 
690 1 0 |a REGULARITY OF SOLUTIONS 
690 1 0 |a WEIGHTED FRACTIONAL NORMS 
690 1 0 |a FINITE ELEMENT METHOD 
700 1 |a Borthagaray, J.P. 
773 0 |d Society for Industrial and Applied Mathematics Publications, 2017  |g v. 55  |h pp. 472-495  |k n. 2  |p SIAM J Numer Anal  |x 00361429  |w (AR-BaUEN)CENRE-263  |t SIAM Journal on Numerical Analysis 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018971197&doi=10.1137%2f15M1033952&partnerID=40&md5=d987cf08560af1efe335f9f9598e3e90  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1137/15M1033952  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00361429_v55_n2_p472_Acosta  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00361429_v55_n2_p472_Acosta  |y Registro en la Biblioteca Digital 
961 |a paper_00361429_v55_n2_p472_Acosta  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86457