pawFLIM: reducing bias and uncertainty to enable lower photon count in FLIM experiments

Förster resonant energy transfer measured by fluorescence lifetime imaging microscopy (FRET-FLIM) is the method of choice for monitoring the spatio-temporal dynamics of protein interactions in living cells. To obtain an accurate estimate of the molecular fraction of interacting proteins requires a l...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Silberberg, M.
Otros Autores: Grecco, H.E
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: NLM (Medline) 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 02762caa a22002777a 4500
001 PAPER-25459
003 AR-BaUEN
005 20230518205730.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85052625671 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Silberberg, M. 
245 1 0 |a pawFLIM: reducing bias and uncertainty to enable lower photon count in FLIM experiments 
260 |b NLM (Medline)  |c 2017 
506 |2 openaire  |e Política editorial 
520 3 |a Förster resonant energy transfer measured by fluorescence lifetime imaging microscopy (FRET-FLIM) is the method of choice for monitoring the spatio-temporal dynamics of protein interactions in living cells. To obtain an accurate estimate of the molecular fraction of interacting proteins requires a large number of photons, which usually precludes the observation of a fast process, particularly with time correlated single photon counting (TCSPC) based FLIM. In this work, we propose a novel method named pawFLIM (phasor analysis via wavelets) that allows the denoising of FLIM datasets by adaptively and selectively adjusting the desired compromise between spatial and molecular resolution. The method operates by applying a weighted translational-invariant Haar-wavelet transform denoising algorithm to phasor images. This results in significantly less bias and mean square error than other existing methods. We also present a new lifetime estimator (named normal lifetime) with a smaller mean squared error and overall bias as compared to frequency domain phase and modulation lifetimes. Overall, we present an approach that will enable the observation of the dynamics of biological processes at the molecular level with better temporal and spatial resolution.  |l eng 
593 |a Departamento de Física, FCEyN, UBA and IFIBA, CONICET, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
700 1 |a Grecco, H.E. 
773 0 |d NLM (Medline), 2017  |g v. 5  |h pp. 024016  |k n. 2  |p Methods Appl Fluoresc  |x 20506120  |t Methods and applications in fluorescence 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052625671&doi=10.1088%2f2050-6120%2faa72ab&partnerID=40&md5=07eccd342656eaf67f154177d4e16198  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1088/2050-6120/aa72ab  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_20506120_v5_n2_p024016_Silberberg  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20506120_v5_n2_p024016_Silberberg  |y Registro en la Biblioteca Digital 
961 |a paper_20506120_v5_n2_p024016_Silberberg  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86412