Electron emission perpendicular to the polarization direction in laser-assisted XUV atomic ionization

We present a theoretical study of ionization of the hydrogen atom due to an XUV pulse in the presence of an infrared (IR) laser with both fields linearly polarized in the same direction. In particular, we study the energy distribution of photoelectrons emitted perpendicularly to the polarization dir...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Gramajo, A.A
Otros Autores: Della Picca, Renata, Arbó, Diego Gabriel
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Physical Society 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10984caa a22011777a 4500
001 PAPER-25435
003 AR-BaUEN
005 20250220091411.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85028660360 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Gramajo, A.A. 
245 1 0 |a Electron emission perpendicular to the polarization direction in laser-assisted XUV atomic ionization 
260 |b American Physical Society  |c 2017 
504 |a Véniard, V., Taïeb, R., Maquet, A., (1995) Phys. Rev. Lett., 74, p. 4161 
504 |a Glover, T.E., Schoenlein, R.W., Chin, A.H., Shank, C.V., (1996) Phys. Rev. Lett., 76, p. 2468 
504 |a Aseyev, S.A., Ni, Y., Frasinski, L.J., Muller, H.G., Vrakking, M.J.J., (2003) Phys. Rev. Lett., 91, p. 223902 
504 |a O'Keeffe, P., López-Martens, R., Mauritsson, J., Johansson, A., L'Huillier, A., Véniard, V., Taïeb, R., Meyer, M., (2004) Phys. Rev. A, 69, p. 051401 
504 |a Guyétand, O., Gisselbrecht, M., Huetz, A., Agostini, P., Taïeb, R., Véniard, V., Maquet, A., Douillet, D., (2005) J. Phys. B: At., Mol. Opt. Phys., 38, p. L357 
504 |a Meyer, M., Cubaynes, D., Glijer, D., Dardis, J., Hayden, P., Hough, P., Richardson, V., Strakhova, S.I., (2008) Phys. Rev. Lett., 101, p. 193002 
504 |a Meyer, M., Costello, J.T., Düsterer, S., Li, W.B., Radcliffe, P., (2010) J. Phys. B: At., Mol. Opt. Phys., 43, p. 194006 
504 |a Radcliffe, P., Arbeiter, M., Li, W.B., Düsterer, S., Redlin, H., Hayden, P., Hough, P., Meyer, M., (2012) New J. Phys., 14, p. 043008 
504 |a Mazza, T., Ilchen, M., Rafipoor, A.J., Callegari, C., Finetti, P., Plekan, O., Prince, K.C., O'Keeffe, P., (2014) Nat. Commun., 5, p. 3648 
504 |a Hayden, P., Dardis, J., Hough, P., Richardson, V., Kennedy, E.T., Costello, J.T., Düsterer, S., Meyer, M., (2016) J. Mod. Opt., 63, p. 358 
504 |a Düsterer, S., Hartmann, G., Babies, F., Beckmann, A., Brenner, G., Buck, J., Costello, J., Kabachnik, N.M., (2016) J. Phys. B: At., Mol. Opt. Phys., 49, p. 165003 
504 |a Kienberger, R., Hentschel, M., Uiberacker, M., Spielmann, C., Kitzler, M., Scrinzi, A., Wieland, M., Krausz, F., (2002) Science, 297, p. 1144 
504 |a Drescher, M., Krausz, F., (2005) J. Phys. B: At., Mol. Opt. Phys., 38, p. S727 
504 |a Maquet, A., Taïeb, R., (2007) J. Mod. Opt., 54, p. 1847 
504 |a Düsterer, S., Rading, L., Johnsson, P., Rouzée, A., Hundertmark, A., Vrakking, M.J.J., Radcliffe, P., Kabachnik, N.M., (2013) J. Phys. B: At., Mol. Opt. Phys., 46, p. 164026 
504 |a Itatani, J., Quéré, F., Yudin, G.L., Ivanov, M.Y., Krausz, F., Corkum, P.B., (2002) Phys. Rev. Lett., 88, p. 173903 
504 |a Frühling, U., Wieland, M., Gensch, M., Gebert, T., Schutte, B., Krikunova, M., Kalms, R., Drescher, M., (2009) Nat. Photon., 3, p. 523 
504 |a Krausz, F., Ivanov, M., (2009) Rev. Mod. Phys., 81, p. 163 
504 |a Pazourek, R., Nagele, S., Burgdörfer, J., (2015) Rev. Mod. Phys., 87, p. 765 
504 |a Taïeb, R., Véniard, V., Maquet, A., Manakov, N.L., Marmo, S.I., (2000) Phys. Rev. A, 62, p. 013402 
504 |a Kazansky, A.K., Grigorieva, A.V., Kabachnik, N.M., (2012) Phys. Rev. A, 85, p. 053409 
504 |a Kazansky, A.K., Bozhevolnov, A.V., Sazhina, I.P., Kabachnik, N.M., (2014) J. Phys. B: At., Mol. Opt. Phys., 47, p. 065602 
504 |a Mazza, T., Gryzlova, E., Grum-Grzhimailo, A., Kazansky, A., Kabachnik, N., Meyer, M., (2015) J. Electron Spectrosc. Relat. Phenom., 204 (PART B), p. 313 
504 |a Richter, M., Kunitski, M., Schöffler, M., Jahnke, T., Schmidt, L.P.H., Li, M., Liu, Y., Dörner, R., (2015) Phys. Rev. Lett., 114, p. 143001 
504 |a Haber, L.H., Doughty, B., Leone, S.R., (2009) J. Phys. Chem. A, 113, p. 13152 
504 |a Mondal, S., Fukuzawa, H., Motomura, K., Tachibana, T., Nagaya, K., Sakai, T., Matsunami, K., Ueda, K., (2014) Phys. Rev. A, 89, p. 013415 
504 |a Keldysh, L.V., (1965) ZhETF, 47, p. 1945 
504 |a Keldysh, L.V., (1965) JETP, 20, p. 1307 
504 |a Faisal, F.H.M., (1973) J. Phys. B: At. Mol. Phys., 6, p. L89 
504 |a Reiss, H.R., (1980) Phys. Rev. A, 22, p. 1786 
504 |a Meyer, M., Cubaynes, D., O'Keeffe, P., Luna, H., Yeates, P., Kennedy, E.T., Costello, J.T., Feldhaus, J., (2006) Phys. Rev. A, 74, p. 011401. , (R) 
504 |a Kazansky, A.K., Kabachnik, N.M., (2010) J. Phys. B: At., Mol. Opt. Phys., 43, p. 035601 
504 |a Kazansky, A.K., Sazhina, I.P., Kabachnik, N.M., (2010) Phys. Rev. A, 82, p. 033420 
504 |a Bivona, S., Bonanno, G., Burlon, R., Leone, C., (2010) Laser Phys., 20, p. 2036 
504 |a Gramajo, A.A., Della Picca, R., Garibotti, C.R., Arbó, D.G., (2016) Phys. Rev. A, 94, p. 053404 
504 |a Haber, L.H., Doughty, B., Leone, S.R., (2010) Mol. Phys., 108, p. 1241 
504 |a Macri, P.A., Miraglia, J.E., Grabielle, M.S., Colavecchia, F.D., Garibotti, C.R., Gasaneo, G., (1998) Phys. Rev. A, 57, p. 2223 
504 |a Arbó, D.G., Miraglia, J.E., Gravielle, M.S., Schiessl, K., Persson, E., Burgdörfer, J., (2008) Phys. Rev. A, 77, p. 013401 
504 |a Wolkow, D., (1935) Z. Phys., 94, p. 250 
504 |a Nagele, S., Pazourek, R., Feist, J., Doblhoff-Dier, K., Lemell, C., Tokési, K., Burgdörfer, J., (2011) J. Phys. B: At., Mol. Opt. Phys., 44, p. 081001 
504 |a Della Picca, R., Fiol, J., Fainstein, P.D., (2013) J. Phys. B: At., Mol. Opt. Phys., 46, p. 175603 
504 |a Chirilǎ, C.C., Potvliege, R.M., (2005) Phys. Rev. A, 71, p. 021402. , (R) 
504 |a Corkum, P.B., Burnett, N.H., Ivanov, M.Y., (1994) Opt. Lett., 19, p. 1870 
504 |a Ivanov, M., Corkum, P.B., Zuo, T., Bandrauk, A., (1995) Phys. Rev. Lett., 74, p. 2933 
504 |a Lewenstein, M., Kulander, K.C., Schafer, K.J., Bucksbaum, P.H., (1995) Phys. Rev. A, 51, p. 1495 
504 |a Arbó, D.G., Ishikawa, K.L., Schiessl, K., Persson, E., Burgdörfer, J., (2010) Phys. Rev. A, 81, p. 021403 
504 |a Arbó, D.G., Ishikawa, K.L., Schiessl, K., Persson, E., Burgdörfer, J., (2010) Phys. Rev. A, 82, p. 043426 
504 |a Tong, X.-M., Chu, S.I., (1997) Chem. Phys., 217, p. 119 
504 |a Tong, X.-M., Chu, S.-I., (2000) Phys. Rev. A, 61, p. 031401. , (R) 
504 |a Tong, X.M., Lin, C.D., (2005) J. Phys. B: At., Mol. Opt. Phys., 38, p. 2593 
506 |2 openaire  |e Política editorial 
520 3 |a We present a theoretical study of ionization of the hydrogen atom due to an XUV pulse in the presence of an infrared (IR) laser with both fields linearly polarized in the same direction. In particular, we study the energy distribution of photoelectrons emitted perpendicularly to the polarization direction. As we previously showed in Gramajo et al. [Phys. Rev. A 94, 053404 (2016)1050-294710.1103/PhysRevA.94.053404] for parallel emission, by means of a very simple semiclassical model which considers electron trajectories born at different ionization times, the electron energy spectrum can be interpreted as the interplay of intra- and intercycle interferences. However, contrary to the case of parallel emission the intracycle interference pattern stems from the coherent superposition of four electron trajectories giving rise to (i) interference of electron trajectories born during the same half cycle (intra-half-cycle interference) and (ii) interference between electron trajectories born during the first half cycle with those born during the second half cycle (inter-half-cycle interference). The intercycle interference is responsible for the formation of the sidebands. We also show that the destructive inter-half-cycle interference for the absorption and emission of an even number of IR laser photons is responsible for the characteristic sidebands in the perpendicular direction separated by twice the IR photon energy. This contrasts with the emission along the polarization axis (all sideband orders are present) since intra-half-cycle interferences do not exist in that case. The intracycle interference pattern works as a modulation of the sidebands and, in the same way, it is modulated by the intra-half-cycle interference pattern. We analyze the dependence of the energy spectrum on the laser intensity and the time delay between the XUV pulse and the IR laser. Finally, we show that our semiclassical simulations are in very good agreement with quantum calculations within the strong-field approximation and the numerical solution of the time-dependent Schrödinger equation, giving rise to nonzero emission, in contraposition to other theories. © 2017 American Physical Society.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACyT 20020130100617BA 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT-2012-3004, PICT-2014-2363 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP0386 
536 |a Detalles de la financiación: Work supported by CONICET (Argentina, Grant No. PIP0386), ANPCyT (Argentina, Grants No. PICT-2012-3004, and No. PICT-2014-2363), and the University of Buenos Aires (Argentina, Grant No. UBACyT 20020130100617BA). 
593 |a Centro Atómico Bariloche (CNEA), CONICET, Bariloche, 8400, Argentina 
593 |a Institute for Astronomy and Space Physics IAFE (UBA-Conicet), Buenos Aires, Argentina 
690 1 0 |a ATOMS 
690 1 0 |a ELECTRON EMISSION 
690 1 0 |a ELECTRON ENERGY LEVELS 
690 1 0 |a ELECTRONS 
690 1 0 |a IONIZATION 
690 1 0 |a NEUTRON EMISSION 
690 1 0 |a PHOTONS 
690 1 0 |a POLARIZATION 
690 1 0 |a SPECTROSCOPY 
690 1 0 |a TIME DELAY 
690 1 0 |a TRAJECTORIES 
690 1 0 |a ABSORPTION AND EMISSIONS 
690 1 0 |a COHERENT SUPERPOSITIONS 
690 1 0 |a ELECTRON ENERGY SPECTRUM 
690 1 0 |a INTERFERENCE PATTERNS 
690 1 0 |a INTRACYCLE INTERFERENCES 
690 1 0 |a POLARIZATION DIRECTION 
690 1 0 |a SEMICLASSICAL SIMULATION 
690 1 0 |a STRONG-FIELD APPROXIMATIONS 
690 1 0 |a ATOM LASERS 
700 1 |a Della Picca, Renata 
700 1 |a Arbó, Diego Gabriel 
773 0 |d American Physical Society, 2017  |g v. 96  |k n. 2  |p Phys. Rev. A  |x 24699926  |t Physical Review A 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028660360&doi=10.1103%2fPhysRevA.96.023414&partnerID=40&md5=696718174b3f5807d0e5e0f328411cff  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRevA.96.023414  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_24699926_v96_n2_p_Gramajo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24699926_v96_n2_p_Gramajo  |y Registro en la Biblioteca Digital 
961 |a paper_24699926_v96_n2_p_Gramajo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion