HEp-2 cell line as an experimental model to evaluate genotoxic effects of pentavalent inorganic arsenic

Early detection of toxic events induced by xenobiotics is necessary for a proper assessment of human risk after the exposure to those agents. The aim of this work was to evaluate the cell line HEp-2 as an experimental model to determine the genotoxic effects of sodium arsenate. To this end, we deter...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Andrioli, N.B
Otros Autores: Chaufan, G., Coalova, I., Ríos De Molina, M.C, Mudry, M.D
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Sociedad Argentina de Genetica 2017
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15779caa a22012377a 4500
001 PAPER-25388
003 AR-BaUEN
005 20230518205725.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85057638265 
024 7 |2 cas  |a arsenate sodium, 7631-89-2; glutathione, 70-18-8; glutathione transferase, 50812-37-8 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a BAGAB 
100 1 |a Andrioli, N.B. 
245 1 0 |a HEp-2 cell line as an experimental model to evaluate genotoxic effects of pentavalent inorganic arsenic 
260 |b Sociedad Argentina de Genetica  |c 2017 
270 1 0 |m Andrioli, N.B.; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Grupo de Investigación en Biología Evolutiva (GIBE), CONICET-Universidad de Buenos Aires, Instituto Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA)Argentina; email: nancyandrioli@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Ahamed, M., Alhadlaq, H.A., Ahmad, J., Siddiqui, M.A., Khan, S.T., Musarrat, J., Al-Khedhairy, A.A., Comparative cytotoxicity of dolomite nanoparticles in human larynx HEp2 and liver HepG2 cells (2015) J. App. Toxicol, 35 (6), pp. 640-650 
504 |a Ahmed, S., Khoda, S.M.E., Rekha, R.S., Gardner, R.M., Ameer, S.S., Moore, S., Raqib, R., Arsenicassociated oxidative stress, inflammation, and immune disruption in human placenta and cord blood (2011) Environ. Health Persp, 119 (2), pp. 258-264 
504 |a Albiano, N.F., Villamil Lepori, E., (2015) Toxicologia Laboral: Criterios Para el Monitoreo de la Salud de los Trabajadores Expuestos a Sustancias Quimicas Peligrosas/Ampliada, p. 522. , Buenos Aires: Superintendencia de riesgos del trabajo 
504 |a Anderson, M.E., Determination of glutathione and glutathione disulfide in biological samples (1985) Methods Enzymol, 113, pp. 548-553 
504 |a Andrighetti-Fröhner, C.R., Kratz, J.M., Antonio, R.V., Creczynski-Pasa, T.B., Barardi, C.R., Simões, C.M., In vitro testing for genotoxicity of violacein assessed by Comet and Micronucleus assays (2006) Mutat. Res, 603 (1), pp. 97-103 
504 |a Basu, A., Ghosh, P., Das, J.K., Banerjee, A., Ray, K., Giri, A.K., Micronuclei as biomarkers of carcinogen exposure in populations exposed to arsenic through drinking water in West Bengal, India: A comparative study in three cell types (2004) Cancer Epidemiol Biomarkers Prev, 13 (5), pp. 820-827 
504 |a Carmichael, J., Mitchell, J.B., Frietman, N., Gaznard, A.F., Russo, A., Glutathion and related enzyme activity in human lung cancer cell lines (1988) Br. J. Cancer, 58 (4), pp. 437-440 
504 |a Coalova, I., Ríos De Molina, M.C., Chaufan, G., Influence of the spray adjuvant on the toxicity effects of a glyphosate formulation. Toxicol (2014) Vitro, 28 (7), pp. 1306-1311 
504 |a Dopp, E., Hartmann, L.M., Florea, A.M., Von Recklinghausen, U., Pieper, R., Shokouhi, B., Obe, G., Uptake of inorganic and organic derivatives of arsenic associated with induced cytotoxic and genotoxic effects in Chinese hamster ovary (CHO) cells (2004) Toxicol. Appl. Pharm, 201 (2), pp. 156-165 
504 |a Dos Santos Branco, C., De Lima, E.D., Rodrigues, T.S., Scheffel, T.B., Scola, G., Laurino, C.C.F.C., Salvador, M., Mitochondria and redox homoeostasis as chemotherapeutic targets of Araucaria angustifolia (Bert.) O. Kuntze in human larynx HEp-2 cancer cells (2015) Chem-Biol. Interact, 231, pp. 108-118 
504 |a Elhajouji, A., Tibaldi, F., Kirsch-Volders, M., Indication for thresholds of chromosome non-disjunction versus chromosome lagging induced by spindle inhibitors in vitro in human lymphocytes (1997) Mutagenesis, 12 (3), pp. 133-140 
504 |a National pr imar y drinking water regulations, arsenic and clarifications to compliance and new source contaminants monitoring, final rule (2001) Federal Register, 66, pp. 6976-7066. , Environmental Protection Agency 
504 |a (2007) European Chemical Substances Information System (ESIS), , European Chemicals Bureau 
504 |a Fenech, M., Cytokinesis-block micronucleus cytome assay (2007) Nat. Prot, 2 (5), pp. 1084-1104 
504 |a Florea, A.M., Yamoah, E.N., Dopp, E., Intracellular calcium disturbances induced by arsenic and its methylated derivatives in relation to genomic damage and apoptosis induction (2005) Environ. Health Persp, 113 (6), pp. 659-664 
504 |a Gebel, T.W., Genotoxicity of arsenical compounds (2001) Int. J. Hyg. Environ. Health, 203 (3), pp. 249-262 
504 |a Gomaa, I.E., Bhatt, S., Liehr, T., Bakr, M., El-Tayeb, T.A., Ag and Co/Ag nanoparticles cytotoxicity and genotoxicity study on hep-2 and blood lymphocytes cells (2015) Chemical Technology: Key Developments in Applied Chemistry. Biochemistry and Materials Science 13 
504 |a Habig, W.H., Pabst, M.J., Jakoby, W.B., Glutathione S-transferase a from rat liver (1976) Arch. Biochem. Biophys, 175 (2), pp. 710-716 
504 |a Huff, J., Chan, P., Nyska, A., Is the human carcinogen arsenic carcinogenic to laboratory animals? (2000) Toxicol. Sci, 55 (1), pp. 17-23 
504 |a Hughes, M.F., Beck, B.D., Chen, Y., Lewis, A.S., Thomas, D.J., Arsenic exposure and toxicology: A historical perspective (2011) Toxicol. Sci, 123 (2), pp. 305-332 
504 |a Some drinking-water disinfectants and contaminants, including arsenic, IARC Monogr (2004) Eval. Carcinog. Risks Hum, 84, pp. 1-477. , IARC 
504 |a Kirsch-Volders, M., Vanhauwaert, A., Eichenlaub-Ritter, U., Decordier, I., Indirect mechanisms of genotoxicity Toxicol (2003) Lett, 140, pp. 63-74 
504 |a Kitchin, K.T., Recent advances in arsenic carcinogenesis: Modes of action, animal model systems, and methylated arsenic metabolites (2001) Toxicol. Appl. Pharmacol, 172 (3), pp. 249-261 
504 |a Kligerman, A.D., Doerr, C.L., Tennant, A.H., Harrington Brock, K., Allen, J.W., Winkfield, E., Mass, M.J., Methylated trivalent arsenicals as candidate ultimate genotoxic forms of arsenic: Induction of chromosomal mutations but not gene mutations (2003) Environ. Mol. Mutagen, 42 (3), pp. 192-205 
504 |a Kochhar, T.S., Howard, W., Hoffman, S., Brammer-Carleton, L., Effect of trivalent and pentavalent arsenic in causing chromosome alterations in cultured Chinese hamster ovary (CHO) cells (1996) Toxicol. Lett, 84 (1), pp. 37-42 
504 |a Liao, W.T., Lin, P., Cheng, T.S., Yu, H.S., Chang, L.W., Arsenic promotes centrosome abnormalities and cell colony formation in p53 compromised human lung cells (2007) Toxicol. Appl. Pharmacol, 225 (2), pp. 162-170 
504 |a Miller, W.H., Schipper, H.M., Lee, J.S., Singer, J., Waxman, S., Mechanisms of action of arsenic trioxide (2002) Cancer Res, 62 (14), pp. 3893-3903 
504 |a Mossman, T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays (1983) J. Immunol. Methods, 65, pp. 55-63 
504 |a Nakamuro, K., Sayato, Y., Comparative studies of chromosomal aberration induced by trivalent and pentavalent arsenic (1987) Mutat. Res, 88 (1), pp. 3-80 
504 |a Odanaka, Y., Matano, O., Goto, S., Biomethylation of inorganic arsenic by the rat and some laboratory animals (1980) Bull. Environ. Contam. Toxicol, 24 (1), pp. 452-459 
504 |a Osman, I.F., Baumgartner, A., Cemeli, E., Fletcher, J.N., Anderson, D., Genotoxicity and cytotoxicity of zinc oxide and titanium dioxide in HEp-2 cells (2005) Nanomedicine, 8, pp. 1193-1203 
504 |a Oya-Ohta, Y., Kaise, T., Ochi, T., Induction of chromosomal aberrations in cultured human fibroblasts by inorganic and organic arsenic compounds and the different roles of glutathione in such induction (1996) Mutat. Res, 357 (1-2), pp. 123-129 
504 |a Peel, A.E., Brice, A., Marzin, D., Erb, F., Cellular uptake and biotransformation of arsenic V in transformed human cell Lines HeLa S 3 and Hep G 2 (1991) Toxicol.in Vitro, 5 (2), pp. 165-168 
504 |a Raisuddin, S., Jha, A.N., Relative sensitivity of fish and mammalian cells to sodium arsenate and arsenite as determined by alkaline single cell gel electrophoresis and cytokinesi block micronucleus assay (2004) Environ. Mol. Mutagen, 44 (1), pp. 83-89 
504 |a Raja, W.K., Satti, J., Liu, G., Castracane, J., Dose response of MTLn3 cells to serial dilutions of arsenic trioxide and ionizing radiation (2013) Dose-response, 11 (1) 
504 |a Rizo, W.F., Ferreira, L.E., Colnaghi, V., Martins, J.S., Franchi, L.P., Takahashi, C.S., Fachin, A.L., Cytotoxicity and genotoxicity of coronaridine from Tabernaemontanacatharinensis A. DC in a human laryngeal epithelial carcinoma cell line (Hep-2) (2013) Genet. Mol. Biol, 36 (1), pp. 105-110 
504 |a Rossman, T.G., Klein, C.B., Genetic and epigenetic effects of environmental arsenicals (2011) Metallomic, 3 (11), pp. 1135-1141 
504 |a Rossman, T.G., Stone, D., Molina, M., Troll, W., Absence of arsenite mutagenicity in E. Coli and Chinese hamster cells (1980) Environ. Mutagen, 2 (3), pp. 371-379 
504 |a Rudel, R., Slayton, T.M., Beck, B.D., Implications of arsenic genotoxicity for dose response of carcinogenic effects (1996) Regul. Toxicol. Pharm, 23 (2), pp. 87-105 
504 |a Schuhmacher-Wolz, U., Dieter, H.H., Klein, D., Schneider, K., Oral exposure to inorganic arsenic: Evaluation of its carcinogenic and non-carcinogenic effects (2009) Crit. Rev. Toxicol, 39 (4), pp. 271-298 
504 |a Sciandrello, G., Barbaro, R., Caradonna, F., Barbata, G., Early induction of genetic instability and apoptosis by arsenic in cultured Chinese hamster cells (2002) Mutagenesis, 17 (2), pp. 99-103 
504 |a Summer, K.H., Wiebel, F.J., Glutathione and glutathione S-transferase activities of mammalian cells in culture (1981) Toxicol. Lett, 9 (4), pp. 409-413 
504 |a Talorete, T.P.N., Bouaziz, M., Sayadi, S., Isoda, H., Influence of medium type and serum on MTT reduction by flavonoids in the absence of cells (2007) Cytotechnology, 52, pp. 189-198 
504 |a Thompson, D.J., A chemical hypothesis for arsenic methylation in mammals (1993) Chemi-Biol. Interact, 88 (2), pp. 89-114 
504 |a Tokar, E.J., Benbrahim-Tallaa, L., Ward, J.M., Lunn, R., Sans, R.L., Waalkes, M.P., Cancer in experimental animals exposed to arsenic and arsenic compounds (2010) Crit. Rev. Toxicol, 40, pp. 912-927 
504 |a Tokar, E.J., Diwan, B.A., Ward, J.M., Delker, D.A., Waalkes, M.P., Carcinogenic effect of 'whole-life' exposure to inorganic arsenic in CD 1 mice (2011) Toxicol. Sci, 119, pp. 73-83 
504 |a Vahter, M., Mechanisms of arsenic biotransformation (2002) Toxicology, 181, pp. 211-217 
504 |a Waalkes, M.P., Liu, J., Diwan, B.A., Transplacental arsenic carcinogenesis in mice (2007) Toxicol. Appl. Pharmacol, 222, pp. 271-280 
504 |a Westerink, W.M., Schirris, T.J., Horbach, G.J., Schoonen, W.G., Development and validation of a high-content screening in vitro micronucleus assay in CHO-k1 and HepG2 cells (2001) Mutat. Res, 724 (1-2), pp. 7-21 
504 |a Wilkening, S., Stahl, F., Bade, A., Comparison of primary human hepatocytes and hepatoma cell line Hepg2 with regard to their biotransformation properties (2003) Drug Metab. Dispos, 31 (8), pp. 1035-1042 
504 |a Yadav, K.K., Trivedi, S.P., Sublethal exposure of heavy metals induces micronuclei in fish, Channa punctate (2009) Chemosphere, 77 (11), pp. 1495-1500 
520 3 |a Early detection of toxic events induced by xenobiotics is necessary for a proper assessment of human risk after the exposure to those agents. The aim of this work was to evaluate the cell line HEp-2 as an experimental model to determine the genotoxic effects of sodium arsenate. To this end, we determined the metabolic activity cells by the MTT test on seven concentrations of arsenate that range from 27 to 135,000 μM, obtaining the median lethal concentration (LC50), the lowest observed effect concentration (LOEC), and the not observed effect concentration (NOEC) of sodium arsenate at 24 h of exposition. According to the cytotoxic response obtained, we evaluated the genotoxic effect of the 27 and 270 μM concentrations by using the micronucleus assay and chromosomal aberrations test. We found a statistically significant increase (p<0.05) in the frequency of micronuclei between control cultures and those exposed to the highest concentration of sodium arsenate. Furthermore, the frequencies of nucleoplasmic bridges and tripolar mitosis were significantly higher in cell cultures exposed to the above concentrations compared to the control cultures (p<0.05). The participation of the glutathione system as response to the arsenate exposition was also analyzed, and a statistically significant increase in the glutathione content was found in those cells exposed to 27 μM of arsenate. The Glutathione S-transferase activity did not increase in the exposed cells compared to control cells, suggesting that the arsenate reduction involved other metabolic pathways in the HEp-2 cells. These results confirm that, under the conditions carried out in this study, sodium arsenate is genotoxic for HEp-2 cells. Therefore, we suggest that this cell line would be a good model for the assessment of the cytotoxic and genotoxic effects of xenobiotics on human cells. © 2017 Sociedad Argentina de Genetica. All rights reserved.  |l eng 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Grupo de Investigación en Biología Evolutiva (GIBE), CONICET-Universidad de Buenos Aires, Instituto Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Enzimología, Estrés y Metabolismo (LEEM), CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina 
690 1 0 |a CYTOTOXICITY 
690 1 0 |a GENOTOXICITY 
690 1 0 |a GLUTATHIONE 
690 1 0 |a HEP-2 CELL LINE 
690 1 0 |a ARSENATE SODIUM 
690 1 0 |a GLUTATHIONE 
690 1 0 |a GLUTATHIONE TRANSFERASE 
690 1 0 |a ARTICLE 
690 1 0 |a CHROMOSOME ABERRATION 
690 1 0 |a CONCENTRATION (PARAMETERS) 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a CYTOTOXICITY 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a EVALUATION STUDY 
690 1 0 |a EXPERIMENTAL MODEL 
690 1 0 |a GENOTOXICITY 
690 1 0 |a HEP-2 CELL LINE 
690 1 0 |a HUMAN 
690 1 0 |a HUMAN CELL 
690 1 0 |a LC50 
690 1 0 |a LOWEST OBSERVED EFFECT CONCENTRATION 
690 1 0 |a MICRONUCLEUS 
690 1 0 |a MICRONUCLEUS TEST 
690 1 0 |a MTT ASSAY 
700 1 |a Chaufan, G. 
700 1 |a Coalova, I. 
700 1 |a Ríos De Molina, M.C. 
700 1 |a Mudry, M.D. 
773 0 |d Sociedad Argentina de Genetica, 2017  |g v. 28  |h pp. 15-24  |k n. 2  |p BAG J. Basic Appl. Genet.  |x 16660390  |w (AR-BaUEN)CENRE-9490  |t BAG - Journal of Basic and Applied Genetics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057638265&partnerID=40&md5=35803afb8e91c2c1f1e2e96d69ffda7a  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_16660390_v28_n2_p15_Andrioli  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16660390_v28_n2_p15_Andrioli  |y Registro en la Biblioteca Digital 
961 |a paper_16660390_v28_n2_p15_Andrioli  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion