Effect of halogen dopants on the properties of Li2O2: Is chloride special?

There is consensus on the fact that one of the main limitations of Li air batteries (LABs) is the insulating character of Li2O2 and that it becomes crucial to explore new conduction paths. Recent studies indicate that doping with chloride increases the ion conductivity of Li2O2, although to a much l...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cortes, H.A
Otros Autores: Vildosola, V.L, Barral, M.A, Corti, H.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Royal Society of Chemistry 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:There is consensus on the fact that one of the main limitations of Li air batteries (LABs) is the insulating character of Li2O2 and that it becomes crucial to explore new conduction paths. Recent studies indicate that doping with chloride increases the ion conductivity of Li2O2, although to a much lesser extent than expected if chloride is assumed to be a donor dopant [Gerbig et al., Adv. Mater., 2013, 25, 3129]. Subsequently, it has been shown that the addition of lithium chloride, LiCl, to the battery electrolyte increases its discharge capacity, while this effect is not observed with other halogens [Matsuda et al., J. Phys. Chem. C, 2016, 120, 13360]. This fact was attributed to an increase in the conductivity of Cl-doped Li2O2, but still the responsible mechanism is not clear. In this work, we have performed first principle calculations to study the effect of the different halogens (F, Cl, Br, I) as substitutional defects on the electronic and transport properties of Li2O2. We have calculated the formation energies of the different defects and impurities and we analysed how they affect the activation barriers and diffusion coefficients. We have demonstrated that the chloride does not behave like a donor dopant, thus explaining the meager increase of the ionic conductivity experimentally observed, and neither does it promote polaron formation and mobility. We have also found that chloride does not present any special behaviour among the halogen series. Our results reveal that all the studied configurations associated with the halogen defects do not derive metallic states nor extra polarons that would increase considerably the electronic conductivity. This is mainly due to the ionic characteristics of the Li2O2 crystal and the capability of the oxygen dimers to adapt its valence rather than to the nature of the dopant itself. © 2018 the Owner Societies.
Bibliografía:Gallagher, K.G., Goebel, S., Greszler, T., Mathias, M., Oelerich, W., Eroglu, D., Srinivasan, V., (2014) Energy Environ. Sci., 7, pp. 1555-1563
Luntz, A.C., McCloskey, B.D., (2014) Chem. Rev., 114, pp. 11721-11750
Lu, Y.-C., Gallant, B.M., Kwabi, D.G., Harding, J.R., Mitchell, R.R., Whittingham, M.S., Shao-Horn, Y., (2013) Energy Environ. Sci., 6, pp. 750-768
McCloskey, B.D., Burke, C.M., Nichols, J.E., Renfrew, S.E., (2015) Chem. Commun., 51, pp. 12701-12715
Johnson, L., Li, C., Liu, Z., Chen, Y., Freunberger, S.A., Ashok, P.C., Praveen, B.B., Bruce, P.G., (2014) Nat. Chem., 6, pp. 1091-1099
Tan, P., Kong, W., Shao, Z., Liu, M., Ni, M., (2017) Prog. Energy Combust. Sci., 62, pp. 155-189
Strange, J.H., Rageb, S.M., Chadwick, A.V., Flack, K.W., Harding, J.H., (1990) J. Chem. Soc., Faraday Trans., 86, pp. 1239-1241
Ong, S.P., Mo, Y., Ceder, G., (2012) Phys. Rev. B: Condens. Matter Mater. Phys., 85, p. 081105
Gerbig, O., Merkle, R., Maier, J., (2013) Adv. Mater., 25, pp. 3129-3133
Hummelshoj, J.S., Blomqvist, J., Datta, S., Vegge, T., Rossmeisl, J., Thygesen, K.S., Luntz, A.C., Norskov, J.K., (2010) J. Chem. Phys., 132, p. 071101
Radin, M.D., Rodriguez, J.F., Tian, F., Siegel, D.J., (2012) J. Am. Chem. Soc., 134, pp. 1093-1103
Kang, J., Jung, Y.S., Wei, S.-H., Dillon, A.C., (2012) Phys. Rev. B: Condens. Matter Mater. Phys., 85, p. 035210
Geng, W.T., He, B.L., Ohno, T., (2013) J. Phys. Chem. C, 117, pp. 25222-25228
Tian, F., Radin, M.D., Siegel, D.J., (2014) Chem. Mater., 26, pp. 2952-2959
Garcia-Lastra, J.M., Myrdal, J.S.G., Christensen, R., Thygesen, K.S., Vegge, T., (2013) J. Phys. Chem. C, 117, pp. 5568-5577
Radin, M.D., Siegel, D.J., (2013) Energy Environ. Sci., 6, pp. 2370-2379
Hojberg, J., McCloskey, B.D., Hjelm, J., Vegge, T., Johansen, K., Norby, P., Luntz, A.C., (2015) ACS Appl. Mater. Interfaces, 7, pp. 4039-4047
Luntz, A.C., Viswanathan, V., Voss, J., Varley, J.B., Norskov, J.K., Scheffler, R., Speideli, A., (2013) J. Phys. Chem. Lett., 4, pp. 3494-3499
Varley, J.B., Viswanathan, V., Norskov, J.K., Luntz, A.C., (2014) Energy Environ. Sci., 7, pp. 720-727
Dunst, A., Epp, V., Hanzu, I., Freunberger, S.A., Wilkening, M., (2014) Energy Environ. Sci., 7, pp. 2739-2752
Timoshevskii, V., Feng, Z., Bevan, K.H., Goodenough, J., Zaghib, K., (2013) Appl. Phys. Lett., 103, p. 073901
Radin, M.D., Monroe, C.W., Siegel, D.J., (2015) Chem. Mater., 27, pp. 839-847
Matsuda, S., Kubo, Y., Uosaki, K., Hashimoto, K., Nakanishi, S., (2016) J. Phys. Chem. C, 120, pp. 13360-13365
Matsuda, S., Uosaki, K., Nakanishi, S., (2017) J. Power Sources, 353, pp. 138-143
Hohenberg, P., Kohn, W., (1964) Phys. Rev., 136, pp. B864-B870
Kresse, G., Furthmuller, J., (1996) Comput. Mater. Sci., 6, pp. 15-50
Kresse, G., Furthmüller, J., (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186
Krukau, A.V., Vydrov, O.A., Izmaylov, A.F., Scuseria, G.E., (2006) J. Chem. Phys., 125, p. 224106
Shishkin, M., Kresse, G., (2006) Phys. Rev. B: Condens. Matter Mater. Phys., 74, p. 035101
Shishkin, M., Marsman, M., Kresse, G., (2007) Phys. Rev. Lett., 99, p. 246403
Ganapathy, S., Adams, B.D., Stenou, G., Anastasaki, M.S., Goubitz, K., Miao, X.-F., Nazar, L.F., Wagemaker, M., (2014) J. Am. Chem. Soc., 136, pp. 16335-16344
Makov, G., Payne, M.C., (1995) Phys. Rev. B: Condens. Matter Mater. Phys., 51, pp. 4014-4022
Cota, L.G., De La Mora, P., (2005) Acta Crystallogr., Sect. B: Struct. Sci., 61, pp. 133-136
Chan, M.K.Y., Shirley, E.L., Karan, N.K., Balasubramanian, M., Ren, Y., Greeley, J.P., Fister, T.T., (2011) J. Phys. Chem. C, 2, pp. 2483-2486
ISSN:14639076
DOI:10.1039/c8cp01211c