Effect of halogen dopants on the properties of Li2O2: Is chloride special?

There is consensus on the fact that one of the main limitations of Li air batteries (LABs) is the insulating character of Li2O2 and that it becomes crucial to explore new conduction paths. Recent studies indicate that doping with chloride increases the ion conductivity of Li2O2, although to a much l...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cortes, H.A
Otros Autores: Vildosola, V.L, Barral, M.A, Corti, H.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Royal Society of Chemistry 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08547caa a22007937a 4500
001 PAPER-25331
003 AR-BaUEN
005 20230518205721.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85049339331 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PPCPF 
100 1 |a Cortes, H.A. 
245 1 0 |a Effect of halogen dopants on the properties of Li2O2: Is chloride special? 
260 |b Royal Society of Chemistry  |c 2018 
270 1 0 |m Vildosola, V.L.; Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica (CNEA)Argentina; email: vildosol@tandar.cnea.gov.ar 
506 |2 openaire  |e Política editorial 
504 |a Gallagher, K.G., Goebel, S., Greszler, T., Mathias, M., Oelerich, W., Eroglu, D., Srinivasan, V., (2014) Energy Environ. Sci., 7, pp. 1555-1563 
504 |a Luntz, A.C., McCloskey, B.D., (2014) Chem. Rev., 114, pp. 11721-11750 
504 |a Lu, Y.-C., Gallant, B.M., Kwabi, D.G., Harding, J.R., Mitchell, R.R., Whittingham, M.S., Shao-Horn, Y., (2013) Energy Environ. Sci., 6, pp. 750-768 
504 |a McCloskey, B.D., Burke, C.M., Nichols, J.E., Renfrew, S.E., (2015) Chem. Commun., 51, pp. 12701-12715 
504 |a Johnson, L., Li, C., Liu, Z., Chen, Y., Freunberger, S.A., Ashok, P.C., Praveen, B.B., Bruce, P.G., (2014) Nat. Chem., 6, pp. 1091-1099 
504 |a Tan, P., Kong, W., Shao, Z., Liu, M., Ni, M., (2017) Prog. Energy Combust. Sci., 62, pp. 155-189 
504 |a Strange, J.H., Rageb, S.M., Chadwick, A.V., Flack, K.W., Harding, J.H., (1990) J. Chem. Soc., Faraday Trans., 86, pp. 1239-1241 
504 |a Ong, S.P., Mo, Y., Ceder, G., (2012) Phys. Rev. B: Condens. Matter Mater. Phys., 85, p. 081105 
504 |a Gerbig, O., Merkle, R., Maier, J., (2013) Adv. Mater., 25, pp. 3129-3133 
504 |a Hummelshoj, J.S., Blomqvist, J., Datta, S., Vegge, T., Rossmeisl, J., Thygesen, K.S., Luntz, A.C., Norskov, J.K., (2010) J. Chem. Phys., 132, p. 071101 
504 |a Radin, M.D., Rodriguez, J.F., Tian, F., Siegel, D.J., (2012) J. Am. Chem. Soc., 134, pp. 1093-1103 
504 |a Kang, J., Jung, Y.S., Wei, S.-H., Dillon, A.C., (2012) Phys. Rev. B: Condens. Matter Mater. Phys., 85, p. 035210 
504 |a Geng, W.T., He, B.L., Ohno, T., (2013) J. Phys. Chem. C, 117, pp. 25222-25228 
504 |a Tian, F., Radin, M.D., Siegel, D.J., (2014) Chem. Mater., 26, pp. 2952-2959 
504 |a Garcia-Lastra, J.M., Myrdal, J.S.G., Christensen, R., Thygesen, K.S., Vegge, T., (2013) J. Phys. Chem. C, 117, pp. 5568-5577 
504 |a Radin, M.D., Siegel, D.J., (2013) Energy Environ. Sci., 6, pp. 2370-2379 
504 |a Hojberg, J., McCloskey, B.D., Hjelm, J., Vegge, T., Johansen, K., Norby, P., Luntz, A.C., (2015) ACS Appl. Mater. Interfaces, 7, pp. 4039-4047 
504 |a Luntz, A.C., Viswanathan, V., Voss, J., Varley, J.B., Norskov, J.K., Scheffler, R., Speideli, A., (2013) J. Phys. Chem. Lett., 4, pp. 3494-3499 
504 |a Varley, J.B., Viswanathan, V., Norskov, J.K., Luntz, A.C., (2014) Energy Environ. Sci., 7, pp. 720-727 
504 |a Dunst, A., Epp, V., Hanzu, I., Freunberger, S.A., Wilkening, M., (2014) Energy Environ. Sci., 7, pp. 2739-2752 
504 |a Timoshevskii, V., Feng, Z., Bevan, K.H., Goodenough, J., Zaghib, K., (2013) Appl. Phys. Lett., 103, p. 073901 
504 |a Radin, M.D., Monroe, C.W., Siegel, D.J., (2015) Chem. Mater., 27, pp. 839-847 
504 |a Matsuda, S., Kubo, Y., Uosaki, K., Hashimoto, K., Nakanishi, S., (2016) J. Phys. Chem. C, 120, pp. 13360-13365 
504 |a Matsuda, S., Uosaki, K., Nakanishi, S., (2017) J. Power Sources, 353, pp. 138-143 
504 |a Hohenberg, P., Kohn, W., (1964) Phys. Rev., 136, pp. B864-B870 
504 |a Kresse, G., Furthmuller, J., (1996) Comput. Mater. Sci., 6, pp. 15-50 
504 |a Kresse, G., Furthmüller, J., (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186 
504 |a Krukau, A.V., Vydrov, O.A., Izmaylov, A.F., Scuseria, G.E., (2006) J. Chem. Phys., 125, p. 224106 
504 |a Shishkin, M., Kresse, G., (2006) Phys. Rev. B: Condens. Matter Mater. Phys., 74, p. 035101 
504 |a Shishkin, M., Marsman, M., Kresse, G., (2007) Phys. Rev. Lett., 99, p. 246403 
504 |a Ganapathy, S., Adams, B.D., Stenou, G., Anastasaki, M.S., Goubitz, K., Miao, X.-F., Nazar, L.F., Wagemaker, M., (2014) J. Am. Chem. Soc., 136, pp. 16335-16344 
504 |a Makov, G., Payne, M.C., (1995) Phys. Rev. B: Condens. Matter Mater. Phys., 51, pp. 4014-4022 
504 |a Cota, L.G., De La Mora, P., (2005) Acta Crystallogr., Sect. B: Struct. Sci., 61, pp. 133-136 
504 |a Chan, M.K.Y., Shirley, E.L., Karan, N.K., Balasubramanian, M., Ren, Y., Greeley, J.P., Fister, T.T., (2011) J. Phys. Chem. C, 2, pp. 2483-2486 
520 3 |a There is consensus on the fact that one of the main limitations of Li air batteries (LABs) is the insulating character of Li2O2 and that it becomes crucial to explore new conduction paths. Recent studies indicate that doping with chloride increases the ion conductivity of Li2O2, although to a much lesser extent than expected if chloride is assumed to be a donor dopant [Gerbig et al., Adv. Mater., 2013, 25, 3129]. Subsequently, it has been shown that the addition of lithium chloride, LiCl, to the battery electrolyte increases its discharge capacity, while this effect is not observed with other halogens [Matsuda et al., J. Phys. Chem. C, 2016, 120, 13360]. This fact was attributed to an increase in the conductivity of Cl-doped Li2O2, but still the responsible mechanism is not clear. In this work, we have performed first principle calculations to study the effect of the different halogens (F, Cl, Br, I) as substitutional defects on the electronic and transport properties of Li2O2. We have calculated the formation energies of the different defects and impurities and we analysed how they affect the activation barriers and diffusion coefficients. We have demonstrated that the chloride does not behave like a donor dopant, thus explaining the meager increase of the ionic conductivity experimentally observed, and neither does it promote polaron formation and mobility. We have also found that chloride does not present any special behaviour among the halogen series. Our results reveal that all the studied configurations associated with the halogen defects do not derive metallic states nor extra polarons that would increase considerably the electronic conductivity. This is mainly due to the ionic characteristics of the Li2O2 crystal and the capability of the oxygen dimers to adapt its valence rather than to the nature of the dopant itself. © 2018 the Owner Societies.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: The authors thank financial support from ANPCyT (PICT 2015 0869, PICT 2014 1555, PICTE 2014 134, PICT 2013 1818) and CONICET (PIP 2015 0364 GI, PIP 2013 0808). The authors kindly thank Maxwel Radin for useful information regarding the calculation of the chemical potentials. VLV, MAB, and HRC are members of CONICET. HACP thanks a fellowship from ANPCyT. 
593 |a Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina 
593 |a Instituto de Nanociencia y Nanotecnología (INN CNEA-CONICET), Buenos Aires, Argentina 
593 |a Instituto de Química Física de Los Materiales Medio Ambiente y Energía, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina 
700 1 |a Vildosola, V.L. 
700 1 |a Barral, M.A. 
700 1 |a Corti, H.R. 
773 0 |d Royal Society of Chemistry, 2018  |g v. 20  |h pp. 16924-16931  |k n. 25  |p Phys. Chem. Chem. Phys.  |x 14639076  |t Physical Chemistry Chemical Physics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049339331&doi=10.1039%2fc8cp01211c&partnerID=40&md5=e8a992692b9382c256e03cffd7bda7f2  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1039/c8cp01211c  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_14639076_v20_n25_p16924_Cortes  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14639076_v20_n25_p16924_Cortes  |y Registro en la Biblioteca Digital 
961 |a paper_14639076_v20_n25_p16924_Cortes  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 86284