Effect of halogen dopants on the properties of Li2O2: Is chloride special?
There is consensus on the fact that one of the main limitations of Li air batteries (LABs) is the insulating character of Li2O2 and that it becomes crucial to explore new conduction paths. Recent studies indicate that doping with chloride increases the ion conductivity of Li2O2, although to a much l...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Royal Society of Chemistry
2018
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 08547caa a22007937a 4500 | ||
|---|---|---|---|
| 001 | PAPER-25331 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518205721.0 | ||
| 008 | 190410s2018 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-85049339331 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a PPCPF | ||
| 100 | 1 | |a Cortes, H.A. | |
| 245 | 1 | 0 | |a Effect of halogen dopants on the properties of Li2O2: Is chloride special? |
| 260 | |b Royal Society of Chemistry |c 2018 | ||
| 270 | 1 | 0 | |m Vildosola, V.L.; Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica (CNEA)Argentina; email: vildosol@tandar.cnea.gov.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Gallagher, K.G., Goebel, S., Greszler, T., Mathias, M., Oelerich, W., Eroglu, D., Srinivasan, V., (2014) Energy Environ. Sci., 7, pp. 1555-1563 | ||
| 504 | |a Luntz, A.C., McCloskey, B.D., (2014) Chem. Rev., 114, pp. 11721-11750 | ||
| 504 | |a Lu, Y.-C., Gallant, B.M., Kwabi, D.G., Harding, J.R., Mitchell, R.R., Whittingham, M.S., Shao-Horn, Y., (2013) Energy Environ. Sci., 6, pp. 750-768 | ||
| 504 | |a McCloskey, B.D., Burke, C.M., Nichols, J.E., Renfrew, S.E., (2015) Chem. Commun., 51, pp. 12701-12715 | ||
| 504 | |a Johnson, L., Li, C., Liu, Z., Chen, Y., Freunberger, S.A., Ashok, P.C., Praveen, B.B., Bruce, P.G., (2014) Nat. Chem., 6, pp. 1091-1099 | ||
| 504 | |a Tan, P., Kong, W., Shao, Z., Liu, M., Ni, M., (2017) Prog. Energy Combust. Sci., 62, pp. 155-189 | ||
| 504 | |a Strange, J.H., Rageb, S.M., Chadwick, A.V., Flack, K.W., Harding, J.H., (1990) J. Chem. Soc., Faraday Trans., 86, pp. 1239-1241 | ||
| 504 | |a Ong, S.P., Mo, Y., Ceder, G., (2012) Phys. Rev. B: Condens. Matter Mater. Phys., 85, p. 081105 | ||
| 504 | |a Gerbig, O., Merkle, R., Maier, J., (2013) Adv. Mater., 25, pp. 3129-3133 | ||
| 504 | |a Hummelshoj, J.S., Blomqvist, J., Datta, S., Vegge, T., Rossmeisl, J., Thygesen, K.S., Luntz, A.C., Norskov, J.K., (2010) J. Chem. Phys., 132, p. 071101 | ||
| 504 | |a Radin, M.D., Rodriguez, J.F., Tian, F., Siegel, D.J., (2012) J. Am. Chem. Soc., 134, pp. 1093-1103 | ||
| 504 | |a Kang, J., Jung, Y.S., Wei, S.-H., Dillon, A.C., (2012) Phys. Rev. B: Condens. Matter Mater. Phys., 85, p. 035210 | ||
| 504 | |a Geng, W.T., He, B.L., Ohno, T., (2013) J. Phys. Chem. C, 117, pp. 25222-25228 | ||
| 504 | |a Tian, F., Radin, M.D., Siegel, D.J., (2014) Chem. Mater., 26, pp. 2952-2959 | ||
| 504 | |a Garcia-Lastra, J.M., Myrdal, J.S.G., Christensen, R., Thygesen, K.S., Vegge, T., (2013) J. Phys. Chem. C, 117, pp. 5568-5577 | ||
| 504 | |a Radin, M.D., Siegel, D.J., (2013) Energy Environ. Sci., 6, pp. 2370-2379 | ||
| 504 | |a Hojberg, J., McCloskey, B.D., Hjelm, J., Vegge, T., Johansen, K., Norby, P., Luntz, A.C., (2015) ACS Appl. Mater. Interfaces, 7, pp. 4039-4047 | ||
| 504 | |a Luntz, A.C., Viswanathan, V., Voss, J., Varley, J.B., Norskov, J.K., Scheffler, R., Speideli, A., (2013) J. Phys. Chem. Lett., 4, pp. 3494-3499 | ||
| 504 | |a Varley, J.B., Viswanathan, V., Norskov, J.K., Luntz, A.C., (2014) Energy Environ. Sci., 7, pp. 720-727 | ||
| 504 | |a Dunst, A., Epp, V., Hanzu, I., Freunberger, S.A., Wilkening, M., (2014) Energy Environ. Sci., 7, pp. 2739-2752 | ||
| 504 | |a Timoshevskii, V., Feng, Z., Bevan, K.H., Goodenough, J., Zaghib, K., (2013) Appl. Phys. Lett., 103, p. 073901 | ||
| 504 | |a Radin, M.D., Monroe, C.W., Siegel, D.J., (2015) Chem. Mater., 27, pp. 839-847 | ||
| 504 | |a Matsuda, S., Kubo, Y., Uosaki, K., Hashimoto, K., Nakanishi, S., (2016) J. Phys. Chem. C, 120, pp. 13360-13365 | ||
| 504 | |a Matsuda, S., Uosaki, K., Nakanishi, S., (2017) J. Power Sources, 353, pp. 138-143 | ||
| 504 | |a Hohenberg, P., Kohn, W., (1964) Phys. Rev., 136, pp. B864-B870 | ||
| 504 | |a Kresse, G., Furthmuller, J., (1996) Comput. Mater. Sci., 6, pp. 15-50 | ||
| 504 | |a Kresse, G., Furthmüller, J., (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186 | ||
| 504 | |a Krukau, A.V., Vydrov, O.A., Izmaylov, A.F., Scuseria, G.E., (2006) J. Chem. Phys., 125, p. 224106 | ||
| 504 | |a Shishkin, M., Kresse, G., (2006) Phys. Rev. B: Condens. Matter Mater. Phys., 74, p. 035101 | ||
| 504 | |a Shishkin, M., Marsman, M., Kresse, G., (2007) Phys. Rev. Lett., 99, p. 246403 | ||
| 504 | |a Ganapathy, S., Adams, B.D., Stenou, G., Anastasaki, M.S., Goubitz, K., Miao, X.-F., Nazar, L.F., Wagemaker, M., (2014) J. Am. Chem. Soc., 136, pp. 16335-16344 | ||
| 504 | |a Makov, G., Payne, M.C., (1995) Phys. Rev. B: Condens. Matter Mater. Phys., 51, pp. 4014-4022 | ||
| 504 | |a Cota, L.G., De La Mora, P., (2005) Acta Crystallogr., Sect. B: Struct. Sci., 61, pp. 133-136 | ||
| 504 | |a Chan, M.K.Y., Shirley, E.L., Karan, N.K., Balasubramanian, M., Ren, Y., Greeley, J.P., Fister, T.T., (2011) J. Phys. Chem. C, 2, pp. 2483-2486 | ||
| 520 | 3 | |a There is consensus on the fact that one of the main limitations of Li air batteries (LABs) is the insulating character of Li2O2 and that it becomes crucial to explore new conduction paths. Recent studies indicate that doping with chloride increases the ion conductivity of Li2O2, although to a much lesser extent than expected if chloride is assumed to be a donor dopant [Gerbig et al., Adv. Mater., 2013, 25, 3129]. Subsequently, it has been shown that the addition of lithium chloride, LiCl, to the battery electrolyte increases its discharge capacity, while this effect is not observed with other halogens [Matsuda et al., J. Phys. Chem. C, 2016, 120, 13360]. This fact was attributed to an increase in the conductivity of Cl-doped Li2O2, but still the responsible mechanism is not clear. In this work, we have performed first principle calculations to study the effect of the different halogens (F, Cl, Br, I) as substitutional defects on the electronic and transport properties of Li2O2. We have calculated the formation energies of the different defects and impurities and we analysed how they affect the activation barriers and diffusion coefficients. We have demonstrated that the chloride does not behave like a donor dopant, thus explaining the meager increase of the ionic conductivity experimentally observed, and neither does it promote polaron formation and mobility. We have also found that chloride does not present any special behaviour among the halogen series. Our results reveal that all the studied configurations associated with the halogen defects do not derive metallic states nor extra polarons that would increase considerably the electronic conductivity. This is mainly due to the ionic characteristics of the Li2O2 crystal and the capability of the oxygen dimers to adapt its valence rather than to the nature of the dopant itself. © 2018 the Owner Societies. |l eng | |
| 536 | |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica | ||
| 536 | |a Detalles de la financiación: The authors thank financial support from ANPCyT (PICT 2015 0869, PICT 2014 1555, PICTE 2014 134, PICT 2013 1818) and CONICET (PIP 2015 0364 GI, PIP 2013 0808). The authors kindly thank Maxwel Radin for useful information regarding the calculation of the chemical potentials. VLV, MAB, and HRC are members of CONICET. HACP thanks a fellowship from ANPCyT. | ||
| 593 | |a Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina | ||
| 593 | |a Instituto de Nanociencia y Nanotecnología (INN CNEA-CONICET), Buenos Aires, Argentina | ||
| 593 | |a Instituto de Química Física de Los Materiales Medio Ambiente y Energía, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina | ||
| 700 | 1 | |a Vildosola, V.L. | |
| 700 | 1 | |a Barral, M.A. | |
| 700 | 1 | |a Corti, H.R. | |
| 773 | 0 | |d Royal Society of Chemistry, 2018 |g v. 20 |h pp. 16924-16931 |k n. 25 |p Phys. Chem. Chem. Phys. |x 14639076 |t Physical Chemistry Chemical Physics | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049339331&doi=10.1039%2fc8cp01211c&partnerID=40&md5=e8a992692b9382c256e03cffd7bda7f2 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1039/c8cp01211c |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_14639076_v20_n25_p16924_Cortes |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14639076_v20_n25_p16924_Cortes |y Registro en la Biblioteca Digital |
| 961 | |a paper_14639076_v20_n25_p16924_Cortes |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 963 | |a VARI | ||
| 999 | |c 86284 | ||