Spaces which Invert Weak Homotopy Equivalences

It is well known that if X is a CW-complex, then for every weak homotopy equivalence f: A ?†' B, the map f∗: [X, A] ?†' [X, B] induced in homotopy classes is a bijection. In fact, up to homotopy equivalence, only CW-complexes have that property. Now, for which spaces X is f∗: [B, X] ?†...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Barmak, J.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Cambridge University Press 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 02423caa a22003377a 4500
001 PAPER-25261
003 AR-BaUEN
005 20230518205717.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85057731878 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Barmak, J.A. 
245 1 0 |a Spaces which Invert Weak Homotopy Equivalences 
260 |b Cambridge University Press  |c 2018 
270 1 0 |m Barmak, J.A.; Departamento de Matemática, Universidad de Buenos Aires, Facultad de Ciencias Exactas y NaturalesArgentina; email: jbarmak@dm.uba.ar 
506 |2 openaire  |e Política editorial 
520 3 |a It is well known that if X is a CW-complex, then for every weak homotopy equivalence f: A ?†' B, the map f∗: [X, A] ?†' [X, B] induced in homotopy classes is a bijection. In fact, up to homotopy equivalence, only CW-complexes have that property. Now, for which spaces X is f∗: [B, X] ?†' [A, X] a bijection for every weak equivalence f? This question was considered by J. Strom and T. Goodwillie. In this note we prove that a non-empty space inverts weak equivalences if and only if it is contractible. Copyright © Edinburgh Mathematical Society 2018.  |l eng 
536 |a Article in Press 
593 |a Departamento de Matemática, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina 
593 |a CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Matemáticas Luis A. Santaló (IMAS), Buenos Aires, Argentina 
690 1 0 |a HOMOTOPY TYPES 
690 1 0 |a NON-HAUSDORFF SPACES 
690 1 0 |a WEAK HOMOTOPY EQUIVALENCES 
773 0 |d Cambridge University Press, 2018  |p Proc. Edinburgh Math. Soc.  |x 00130915  |t Proceedings of the Edinburgh Mathematical Society 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057731878&doi=10.1017%2fS0013091518000639&partnerID=40&md5=56bd0349022dbb20f6678b31a876877f  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1017/S0013091518000639  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00130915_v_n_p_Barmak  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00130915_v_n_p_Barmak  |y Registro en la Biblioteca Digital 
961 |a paper_00130915_v_n_p_Barmak  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86214