Eigenvalues for systems of fractional p-Laplacians

We study the eigenvalue problem for a system of fractional p-Laplacians, that is, (-Δp)ru=λαp|u|α-2u|v|β(-Δp)sv=λβp|u|α|v|β-2vu=v=0in Ω,in Ω,in Ωc=RNΩ. We show that there is a first (smallest) eigenvalue that is simple and has associated eigenpairs composed of positive and bounded functions. Moreove...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Del Pezzo, L.M
Otros Autores: Rossi, J.D
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Rocky Mountain Mathematics Consortium 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07063caa a22006737a 4500
001 PAPER-25260
003 AR-BaUEN
005 20230518205717.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85054576252 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Del Pezzo, L.M. 
245 1 0 |a Eigenvalues for systems of fractional p-Laplacians 
260 |b Rocky Mountain Mathematics Consortium  |c 2018 
506 |2 openaire  |e Política editorial 
504 |a Adams, R.A., Sobolev spaces (1975) Pure Appl. Math., p. 65 
504 |a Amghibech, S., On the discrete version of Picone's identity (2008) Discr. Appl. Math., 156, pp. 1-10 
504 |a Aronsson, G., Crandall, M.G., Juutinen, P., A tour of the theory of absolutely minimizing functions (2004) Bull. Amer. Math. Soc., 41, pp. 439-505 
504 |a Bhattacharya, T., DiBenedetto, E., Manfredi, J.J., Limits as p → ∞ of Δpup = f and related extremal problems (1991) Rend. Sem. Mat. Univ, 1989, pp. 15-68 
504 |a Boccardo, L., De Figueiredo, D.G., Some remarks on a system of quasilinear elliptic equations (2002) Nonlin. Diff. Eqs. Appl., 9, pp. 309-323 
504 |a Bonheure, D., Rossi, J.D., Saintier, N., The limit as p → ∞ in the eigenvalue problem for a system of p-Laplacians (2016) Ann. Mat. Pura Appl., 195, pp. 1771-1785 
504 |a Brasco, L., Franzina, G., Convexity properties of Dirichlet integrals and Picone-type inequalities (2014) Kodai Math. J., 37, pp. 769-799 
504 |a Brasco, L., Lindgren, E., Parini, E., The fractional Cheeger problem (2014) Interfaces Free Bound., 16, pp. 419-458 
504 |a Brasco, L., Parini, E., Squassina, M., Stability of variational eigenvalues for the fractional p-Laplacian (2016) Discr. Contin. Dynam. Syst., 36, pp. 1813-1845 
504 |a Caselles, V., Morel, J.M., Sbert, C., An axiomatic approach to image interpolation (1998) IEEE Trans. Image Proc., 7, pp. 376-386 
504 |a Champion, T., Pascale, L.D., Jimenez, C., The ∞-eigenvalue problem and a problem of optimal transportation (2009) Comm. Appl. Anal., 13, pp. 547-565 
504 |a Pezzo, L.M.D., Rossi, J.D., The first nontrivial eigenvalue for a system of p-Laplacians with Neumann and Dirichlet boundary conditions (2016) Nonlin. Anal., 137, pp. 381-401 
504 |a Demengel, F., Demengel, G., (2012) Functional Spaces for the Theory of Elliptic Partial Differential Equations, , Universitext, Springer, London 
504 |a De Napoli, P.L., Pinasco, J.P., Estimates for eigenvalues of quasilinear elliptic systems (2006) J. Diff. Eqs, 227, pp. 102-115 
504 |a Nezza, E.D., Palatucci, G., Valdinoci, E., Hitchhiker's guide to the fractional Sobolev spaces (2012) Bull. Sci. Math., 136, pp. 521-573 
504 |a Fleckinger, J., Mansevich, R.F., Stavrakakis, N.M., Thlin, F.D., Principal eigenvalues for some quasilinear elliptic equations on Rn (1997) Adv. Diff. Eqs., 2, pp. 981-1003 
504 |a Franzina, G., Palatucci, G., Fractional p-eigenvalues (2014) Riv. Math. Univ. Parma, 5, pp. 373-386 
504 |a Garcia-Azorero, J., Manfredi, J.J., Peral, I., Rossi, J.D., Steklov eigenvlue for the ∞-Laplacian (2006) Rend. Lincei, 17, pp. 199-210 
504 |a Garcia-Azorero, J., Manfredi, J.J., Peral, I., Rossi, J.D., The Neumann problem for the ∞-Laplacian and the Monge- Kantorovich mass transfer problem (2007) Nonlin. Anal., 66, pp. 349-366 
504 |a Garcia-Azorero, J., Peral, I., Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term (1991) Trans. Amer. Math. Soc., 323, pp. 877-895 
504 |a Iannizzotto, A., Mosconi, S., Squassina, M., Global Holder regularity for the fractional p-Laplacian (2016) Rev. Mat. Iber., 32, pp. 1353-1392 
504 |a Juutinen, P., Lindqvist, P., On the higher eigenvalues for the ∞- eigenvalue problem (2005) Calc. Var. Part. Diff. Eqs., 23, pp. 169-192 
504 |a Juutinen, P., Lindqvist, P., Manfredi, J.J., The ∞-eigenvalue problem (1999) Arch. Rat. Mech. Anal., 148, pp. 89-105 
504 |a Lindgren, E., Lindqvist, P., Fractional eigenvalues (2014) Calc. Var. Part. Diff. Eqs., 49, pp. 795-826 
504 |a Peres, Y., Schramm, O., Sheffield, S., Wilson, D.B., Tug-of-war and the infinity Laplacian (2009) J. Amer. Math. Soc., 22, pp. 167-210 
504 |a Peres, Y., Sheffield, S., Tug-of-war with noise: A game theoretic view of the p-Laplacian (2008) Duke Math. J., 145, pp. 91-120 
504 |a Rossi, J.D., Saintier, N., On the first nontrivial eigenvalue of the ∞- Laplacian with Neumann boundary conditions (2016) Houston J. Math., 42, pp. 613-635 
504 |a Rossi, J.D., Saintier, N., The limit as p → +∞ of the first eigenvalue for the p-Laplacian with mixed Dirichlet and Robin boundary conditions (2015) Nonlin. Anal., 119, pp. 167-178 
504 |a Zographopoulos, N., P-Laplacian systems at resonance (2004) Appl. Anal., 83, pp. 509-519 
520 3 |a We study the eigenvalue problem for a system of fractional p-Laplacians, that is, (-Δp)ru=λαp|u|α-2u|v|β(-Δp)sv=λβp|u|α|v|β-2vu=v=0in Ω,in Ω,in Ωc=RNΩ. We show that there is a first (smallest) eigenvalue that is simple and has associated eigenpairs composed of positive and bounded functions. Moreover, there is a sequence of eigenvalues λn such that λn→∞ as n→∞ . In addition, we study the limit as p→∞ of the first eigenvalue, λ1,p, and we obtain [λ1,p]1/p→Λ1,∞ as p→∞, where Λ1,∞=inf(u,v){max{[u]r,∞[v]s,∞}∥|u|Γ|v|1-Γ∥L∞(Ω)}=[1R(Ω)](1-Γ)s+Γr. Here, R(Ω):= maxx∈Ω dist(x,∂Ω) and [w]t,∞:=sup(x,y)∈Ω|w(y)-w(x)||x-y|t. Finally, we identify a PDE problem satisfied, in the viscosity sense, by any possible uniform limit along subsequences of the eigenpairs. Copyright © 2018 Rocky Mountain Mathematics Consortium.  |l eng 
593 |a Departamento de Matematicas Y Estadistica, Av. Figueroa, Alcorta, 7350, Argentina 
593 |a Conicet and Departamento de Matematica, Universidad de Buenos Aires, Pabellon I, Buenos Aires, Argentina 
690 1 0 |a EIGENVALUE PROBLEMS 
690 1 0 |a FRACTIONAL OPERATORS 
690 1 0 |a P-LAPLACIAN 
700 1 |a Rossi, J.D. 
773 0 |d Rocky Mountain Mathematics Consortium, 2018  |g v. 48  |h pp. 1077-1104  |k n. 4  |p Rocky Mt. J. Math.  |x 00357596  |t Rocky Mountain Journal of Mathematics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054576252&doi=10.1216%2fRMJ-2018-48-4-1077&partnerID=40&md5=203e1c109ee5798809ce385c66da7bae  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1216/RMJ-2018-48-4-1077  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00357596_v48_n4_p1077_DelPezzo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00357596_v48_n4_p1077_DelPezzo  |y Registro en la Biblioteca Digital 
961 |a paper_00357596_v48_n4_p1077_DelPezzo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86213