Intra- and intercycle interference of angle-resolved electron emission in laser-assisted XUV atomic ionization

A theoretical study of ionization of the hydrogen atom due to an XUV pulse in the presence of an infrared (IR) laser is presented. Well-established theories are usually used to describe the laser-assisted photoelectron effect: the well-known soft-photon approximation firstly posed by Maquet et al (2...

Descripción completa

Detalles Bibliográficos
Autor principal: Gramajo, A.A
Otros Autores: Picca, R.D, López, S.D, Arbó, Diego Gabriel
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Institute of Physics Publishing 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11784caa a22014897a 4500
001 PAPER-25246
003 AR-BaUEN
005 20240930121420.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85045672149 
030 |a JPAPE 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Gramajo, A.A. 
245 1 0 |a Intra- and intercycle interference of angle-resolved electron emission in laser-assisted XUV atomic ionization 
260 |b Institute of Physics Publishing  |c 2018 
504 |a Véniard, V., Taïeb, R., Maquet, A., (1995) Phys. Rev. Lett., 74, pp. 4161-4164 
504 |a Schins, J.M., Breger, P., Agostini, P., Constantinescu, R.C., Muller, H.G., Bouhal, A., Grillon, G., Mysyrowicz, A., (1996) J. Opt. Soc. Am., 13, pp. 197-200 
504 |a Meyer, M., (2008) Phys. Rev. Lett., 101 
504 |a Meyer, M., Costello, J.T., Düsterer, S., Li, W.B., Radcliffe, P., (2010) J. Phys. B: At. Mol. Opt. Phys., 43 (19) 
504 |a Radcliffe, P., (2012) New J. Phys., 14 (4) 
504 |a Mazza, T., (2014) Nat. Commun., 5, p. 3648 
504 |a Hayden, P., (2016) J. Mod. Opt., 63, pp. 358-366 
504 |a Düsterer, S., (2016) J. Phys. B: At. Mol. Opt. Phys., 49 (16) 
504 |a Drescher, M., Krausz, F., (2005) J. Phys. B: At. Mol. Opt. Phys., 38 (9), pp. S727-S740 
504 |a Goulielmakis, E., (2004) Science, 305, pp. 1267-1269 
504 |a Johnsson, P., (2005) Phys. Rev. Lett., 95 
504 |a Guyétand, O., (2005) J. Phys. B: At. Mol. Opt. Phys., 38 (22), p. L357 
504 |a Guyétand, O., (2008) J. Phys. B: At. Mol. Opt. Phys., 41 (5) 
504 |a Bordas, C., Noordam, L.D., Muller, H.G., Van Der Zande, W.J., Vrakking, M.J.J., (2004) Phys. Scr., 112, p. 87 
504 |a Meyer, M., (2012) Phys. Rev. Lett., 108 
504 |a Düsterer, S., Rading, L., Johnsson, P., Rouzée, A., Hundertmark, A., Vrakking, M.J.J., Radcliffe, P., Kabachnik, N.M., (2013) J. Phys. B: At. Mol. Opt. Phys., 46 (16) 
504 |a Picard, Y.J., (2014) Phys. Rev., 89 
504 |a Itatani, J., Quéré, F., Yudin, G.L., Ivanov, M.Y., Krausz, F., Corkum, P.B., (2002) Phys. Rev. Lett., 88 
504 |a Frühling, U., (2009) Nat. Photon., 3, pp. 523-528 
504 |a Wickenhauser, M., Burgdörfer, J., Krausz, F., Drescher, M., (2006) J. Mod. Opt., 53, pp. 247-257 
504 |a Nagele, S., Pazourek, R., Feist, J., Doblhoff-Dier, K., Lemell, C., Tokési, K., Burgdörfer, J., (2011) J. Phys. B: At. Mol. Opt. Phys., 44 (8) 
504 |a O'Keeffe, P., López-Martens, R., Mauritsson, J., Johansson, A., Johansson, A., Véniard, V., Taïeb, R., Meyer, M., (2004) Phys. Rev., 69 
504 |a Glover, T.E., Schoenlein, R.W., Chin, A.H., Shank, C.V., (1996) Phys. Rev. Lett., 76, pp. 2468-2471 
504 |a Aseyev, S.A., Ni, Y., Frasinski, L.J., Muller, H.G., Vrakking, M.J.J., (2003) Phys. Rev. Lett., 91 
504 |a Swoboda, M., Dahlström, J.M., Ruchon, T., Johnsson, P., Mauritsson, J., L'Huillier, A., Schafer, K.J., (2009) Laser Phys., 19, pp. 1591-1599 
504 |a Schins, J.M., Breger, P., Agostini, P., Constantinescu, R.C., Muller, H.G., Grillon, G., Antonetti, A., Mysyrowicz, A., (1994) Phys. Rev. Lett., 73, pp. 2180-2183 
504 |a Kazansky, A.K., Kabachnik, N.M., (2010) J. Phys. B: At. Mol. Opt. Phys., 43 (3) 
504 |a Nandor, M.J., Walker, M.A., Van Woerkom, L.D., Muller, H.G., (1999) Phys. Rev., 60, pp. R1771-R1774 
504 |a Muller, H.G., (1999) Phys. Rev., 60, pp. 1341-1350 
504 |a Kazansky, A.K., Sazhina, I.P., Kabachnik, N.M., (2010) Phys. Rev., 82 
504 |a Bivona, S., Bonanno, G., Burlon, R., Leone, C., (2010) Laser Phys., 20, pp. 2036-2044 
504 |a Maquet, A., Taïeb, R., (2007) J. Mod. Opt., 54, pp. 1847-1857 
504 |a Jiménez-Galán, A., Argenti, L., Martín, F., (2013) New J. Phys., 15 (11) 
504 |a Meyer, M., (2006) Phys. Rev., 74 
504 |a Taïeb, R., Maquet, A., Meyer, M., (2008) J. Phys.: Conf. Ser., 141 (1) 
504 |a Kroll, N.M., Watson, K.M., (1973) Phys. Rev., 8, pp. 804-809 
504 |a Gramajo, A.A., Della Picca, R., Garibotti, C.R., Arbó, D.G., (2016) Phys. Rev., 94 
504 |a Gramajo, A.A., Della Picca, R., Arbó, D.G., (2017) Phys. Rev., 96 
504 |a Arbó, D.G., Ishikawa, K.L., Schiessl, K., Persson, E., Burgdörfer, J., (2010) Phys. Rev., 81 
504 |a Arbó, D.G., Ishikawa, K.L., Schiessl, K., Persson, E., Burgdörfer, J., (2010) Phys. Rev., 82 
504 |a Arbó, D.G., Ishikawa, K.L., Persson, E., Burgdörfer, J., (2012) Proc. 5th Int. Conf. On Elementary Processes in Atomic Systems Belgrade (Serbia, 21-25 June 2011); Nucl. Instrum. Methods Phys. Res., 279, pp. 24-30 
504 |a Haber, L.H., Doughty, B., Leone, S.R., (2009) J. Phys. Chem., 113, pp. 13152-13158 
504 |a Haber, L.H., Doughty, B., Leone, S.R., (2010) Mol. Phys., 108, pp. 1241-1251 
504 |a Tong, X.M., Chu, S.I., (1997) Chem. Phys., 217, pp. 119-130 
504 |a Tong, X.M., Chu, S.I., (2000) Phys. Rev., 61 
504 |a Tong, X.M., Lin, C.D., (2005) J. Phys. B: At. Mol. Opt. Phys., 38 (15), p. 2593 
504 |a Schöller, O., Briggs, J.S., Dreizler, R.M., (1986) J. Phys. B: At. Mol. Phys., 19 (16), p. 2505 
504 |a Messiah, A., (1965) Quantum Mechanics I, , (New York: North-Holland) 
504 |a Dionissopoulou, S., Mercouris, T., Lyras, A., Nicolaides, C.A., (1997) Phys. Rev., 55, pp. 4397-4406 
504 |a Della Picca, R., Fiol, J., Fainstein, P.D., (2013) J. Phys. B: At. Mol. Opt. Phys., 46 (17) 
504 |a Macri, P.A., Miraglia, J.E., Gravielle, M.S., (2003) J. Opt. Soc. Am., 20, pp. 1801-1806 
504 |a Wolkow, D.M., (1935) Z. Phys., 94, pp. 250-260 
504 |a Chirilǎ, C.C., Potvliege, R.M., (2005) Phys. Rev., 71 
504 |a Corkum, P.B., Burnett, N.H., Ivanov, M.Y., (1994) Opt. Lett., 19, pp. 1870-1872 
504 |a Ivanov, M., Corkum, P.B., Zuo, T., Bandrauk, A., (1995) Phys. Rev. Lett., 74, pp. 2933-2936 
504 |a Lewenstein, M., Kulander, K.C., Schafer, K.J., Bucksbaum, P.H., (1995) Phys. Rev., 51, pp. 1495-1507 
504 |a Arbó, D.G., Miraglia, J.E., Gravielle, M.S., Schiessl, K., Persson, E., Burgdörfer, J., (2008) Phys. Rev., 77 
504 |a Arbó, D.G., Yoshida, S., Persson, E., Dimitriou, K.I., Burgdörfer, J., (2006) Phys. Rev. Lett., 96 
504 |a Arbó, D.G., (2014) J. Phys. B: At. Mol. Opt. Phys., 47 (20) 
504 |a Meyer, M., (2006) Phys. Rev., 74 
504 |a Meyer, M., (2008) Phys. Rev. Lett., 101 
504 |a Meyer, M., (2010) J. Phys.: Conf. Ser., 212 (1) 
504 |a Düsterer, S., (2016) J. Phys. B: At. Mol. Opt. Phys., 49 (16) 
504 |a Della Picca, R., Lindroth, E., (2015) J. Phys. B: At. Mol. Opt. Phys., 48 (24) 
504 |a Boll, D.I.R., Fojón, O.A., (2014) Phys. Rev., 90 
504 |a Boll, D.I.R., Fojón, O.A., (2017) J. Phys. B: At. Mol. Opt. Phys., 50 (23) 
504 |a Kazansky, A.K., Grigorieva, A.V., Kabachnik, N.M., (2012) Phys. Rev., 85 
504 |a Kazansky, A.K., Bozhevolnov, A.V., Sazhina, I.P., Kabachnik, N.M., (2014) J. Phys. B: At. Mol. Opt. Phys., 47 (6) 
506 |2 openaire  |e Política editorial 
520 3 |a A theoretical study of ionization of the hydrogen atom due to an XUV pulse in the presence of an infrared (IR) laser is presented. Well-established theories are usually used to describe the laser-assisted photoelectron effect: the well-known soft-photon approximation firstly posed by Maquet et al (2007 J. Mod. Opt. 54 1847) and Kazansky's theory in (2010 Phys. Rev. A 82, 033420). However, these theories completely fail to predict the electron emission perpendicularly to the polarization direction. Making use of a semiclassical model (SCM), we study the angle-resolved energy distribution of PEs for the case that both fields are linearly polarized in the same direction. We thoroughly analyze and characterize two different emission regions in the angle-energy domain: (i) the parallel-like region with contribution of two classical trajectories per optical cycle and (ii) the perpendicular-like region with contribution of four classical trajectories per optical cycle. We show that our SCM is able to assess the interference patterns of the angle-resolved PE spectrum in the two different mentioned regions. Electron trajectories stemming from different optical laser cycles give rise to angle-independent intercycle interferences known as sidebands. These sidebands are modulated by an angle-dependent coarse-grained structure coming from the intracycle interference of the electron trajectories born during the same optical cycle. We show the accuracy of our SCM as a function of the time delay between the IR and the XUV pulses and also as a function of the laser intensity by comparing the semiclassical predictions of the angle-resolved PE spectrum with the continuum-distorted wave strong field approximation and the ab initio solution of the time-dependent Schrödinger equation. © 2018 IOP Publishing Ltd.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACyT 20020130100617BA 
536 |a Detalles de la financiación: UNCuyo 06/C487 
536 |a Detalles de la financiación: PIP0386, PIP0513, PICT-2014-2363, PICT 2016-0296 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Work supported by CONICET PIP0386 and PIP0513, PICT-2014-2363 and PICT 2016-0296 of ANPCyT (Argentina), the University of Cuyo (UNCuyo 06/C487) and the University of Buenos Aires (UBACyT 20020130100617BA). 
593 |a CONICET, Centro Atómico Bariloche (CNEA), Bariloche, 8400, Argentina 
593 |a Institute of Astronomy and Space Physics IAFE (CONICET-UBA), CC 67, Suc. 28, Buenos Aires, C1428ZAA, Argentina 
690 1 0 |a ANGLE-RESOLVED PHOTOELECTRON SPECTRA 
690 1 0 |a INTRA- AND INTERCYCLE INTERFERENCES 
690 1 0 |a LASER-ASSITED PHOTOELECTRIC EFFECT 
690 1 0 |a SEMICLASSICAL MODEL 
690 1 0 |a XUV+IR MULTIPHOTON IONIZATION 
690 1 0 |a ATOM LASERS 
690 1 0 |a ATOMS 
690 1 0 |a DISTORTION (WAVES) 
690 1 0 |a PHOTOELECTRICITY 
690 1 0 |a PHOTOELECTRON SPECTROSCOPY 
690 1 0 |a PHOTOELECTRONS 
690 1 0 |a PHOTOIONIZATION 
690 1 0 |a PHOTONS 
690 1 0 |a POLARIZATION 
690 1 0 |a TRAJECTORIES 
690 1 0 |a ANGLE-RESOLVED PHOTOELECTRON SPECTRA 
690 1 0 |a COARSE-GRAINED STRUCTURE 
690 1 0 |a CONTINUUM DISTORTED WAVES 
690 1 0 |a INTRA- AND INTERCYCLE INTERFERENCES 
690 1 0 |a INTRACYCLE INTERFERENCES 
690 1 0 |a MULTIPHOTON IONIZATION 
690 1 0 |a SEMICLASSICAL MODEL 
690 1 0 |a STRONG-FIELD APPROXIMATIONS 
690 1 0 |a ELECTRON EMISSION 
700 1 |a Picca, R.D. 
700 1 |a López, S.D. 
700 1 |a Arbó, Diego Gabriel 
773 0 |d Institute of Physics Publishing, 2018  |g v. 51  |k n. 5  |p J Phys B At Mol Opt Phys  |x 09534075  |w (AR-BaUEN)CENRE-332  |t Journal of Physics B: Atomic, Molecular and Optical Physics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045672149&doi=10.1088%2f1361-6455%2faaaa28&partnerID=40&md5=2b7290a13573f210f4aaf26d8318d5b1  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1088/1361-6455/aaaa28  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09534075_v51_n5_p_Gramajo  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09534075_v51_n5_p_Gramajo  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_09534075_v51_n5_p_Gramajo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI