A construction of certain weak colimits and an exactness property of the 2-category of categories

Given a 2-category A, a 2-functor A (Formula Presented) Cat and a distinguished 1-subcategory Σ ⊂ A containing all the objects, a σ-cone for F (with respect to Σ) is a lax cone such that the structural 2-cells corresponding to the arrows of Σ are invertible. The conical σ-limit is the universal (up...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Descotte, M.E
Otros Autores: Dubuc, E.J, Szyld, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Mount Allison University 2018
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04613caa a22004937a 4500
001 PAPER-25236
003 AR-BaUEN
005 20230518205715.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85044729476 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Descotte, M.E. 
245 1 2 |a A construction of certain weak colimits and an exactness property of the 2-category of categories 
260 |b Mount Allison University  |c 2018 
506 |2 openaire  |e Política editorial 
504 |a Artin, M., Grothendieck, A., Verdier, J., SGA 4, Ch VII, (1963-64) (1972) Springer Lecture Notes in Mathematics, p. 270 
504 |a Canevali, N., (2016) 2-Filtered Bicolimits and Finite Weighted Bilimits Commute in Cat, , http://cms.dm.uba.ar/academico/carreras/licenciatura/tesis/, degree thesis, 2016 
504 |a Data, M.I., (2014) Una construcción De bicolímites 2-Filtrantes De categorías, , http://cms.dm.uba.ar/academico/carreras/licenciatura/tesis/2014, degree thesis 
504 |a Descotte, M.E., Dubuc, E.J., Szyld, M., (2017) On the Notion of Flat 2-Functors 
504 |a Dubuc, E.J., Street, R., A construction of 2-filtered bicolimits of categories (2006) Cahiers De Topologie Et Géométrie Différentielle Catégoriques, 47 (2), pp. 83-106 
504 |a Gray, J.W., Formal category theory: Adjointness for 2-categories (1974) Springer Lecture Notes in Mathematics, p. 391 
504 |a Kelly, G.M., Basic concepts of enriched category theory (1982) London Mathematical Society Lecture Note Series, 64. , Cambridge Univ. Press, New York 
504 |a Kelly, G.M., Elementary observations on 2-Categorical limits (1989) Bull. Austral. Math. Soc, 39, pp. 301-317 
504 |a Kelly, G.M., Street, R., Review of the elements of 2-categories (1974) Springer Lecture Notes in Mathematics, 420, pp. 75-103 
504 |a Kennison, J., The fundamental localic groupoid of a topos (1992) Journal of Pure and Applied Algebra, 77, pp. 67-86 
504 |a Pronk, D.A., Etendues and stacks as bicategories of fractions (1996) Compositio Mathematica, 102 (3), pp. 243-303 
504 |a Street, R., Fibrations in bicategories (1980) Cahiers De Topologie Et géométrie différentielle catégoriques, 21 (2), pp. 111-160 
504 |a Street, R., Correction to Fibrations in bicategories (1987) Cahiers De Topologie Et géométrie différentielle catégoriques, 28 (1), pp. 53-56 
520 3 |a Given a 2-category A, a 2-functor A (Formula Presented) Cat and a distinguished 1-subcategory Σ ⊂ A containing all the objects, a σ-cone for F (with respect to Σ) is a lax cone such that the structural 2-cells corresponding to the arrows of Σ are invertible. The conical σ-limit is the universal (up to isomorphism) σ-cone. The notion of σ-limit generalizes the well known notions of pseudo and lax limit. We consider the fundamental notion of σ-filtered pair (A, Σ) which generalizes the notion of 2-filtered 2-category. We give an explicit construction of σ-filtered σ-colimits of categories, a construction which allows computations with these colimits. We then state and prove a basic exactness property of the 2-category of categories, namely, that σ-filtered σ-colimits commute with finite weighted pseudo (or bi) limits. An important corollary of this result is that a σ-filtered σ-colimit of exact category valued 2-functors is exact. This corollary is essential in the 2-dimensional theory of flat and pro-representable 2-functors, that we develop elsewhere. © Descotte M.E., Dubuc E.J., Szyld M., 2018.  |l eng 
593 |a LaBRI, Université de Bordeaux, France 
593 |a IMAS, Universidad de Buenos Aires, Argentina 
690 1 0 |a 2-CATEGORY 
690 1 0 |a EXACTNESS PROPERTY 
690 1 0 |a FILTERED 
690 1 0 |a WEAK COLIMIT 
700 1 |a Dubuc, E.J. 
700 1 |a Szyld, M. 
773 0 |d Mount Allison University, 2018  |g v. 33  |h pp. 193-215  |p Theory Appl. Categories  |x 1201561X  |w (AR-BaUEN)CENRE-8784  |t Theory and Applications of Categories 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044729476&partnerID=40&md5=cb1612f05d2a5ed15c0a865463018068  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_1201561X_v33_n_p193_Descotte  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1201561X_v33_n_p193_Descotte  |y Registro en la Biblioteca Digital 
961 |a paper_1201561X_v33_n_p193_Descotte  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86189