Group Riesz and frame sequences: the Bracket and the Gramian

Given a discrete group and a unitary representation on a Hilbert space H, we prove that the notions of operator Bracket map and Gramian coincide on a dense set of H. As a consequence, combining this result with known frame theory, we can recover all previous Bracket characterizations of Riesz and fr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Barbieri, D.
Otros Autores: Hernández, E., Paternostro, V.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer-Verlag Italia s.r.l. 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Given a discrete group and a unitary representation on a Hilbert space H, we prove that the notions of operator Bracket map and Gramian coincide on a dense set of H. As a consequence, combining this result with known frame theory, we can recover all previous Bracket characterizations of Riesz and frame sequences generated by a single element under a unitary representation. © 2017, Universitat de Barcelona.
Bibliografía:Barbieri, D., Hernández, E., Parcet, J., Riesz and frame systems generated by unitary actions of discrete groups (2014) Appl. Comput. Harmon. Anal., 39, pp. 369-399
Barbieri, D., Hernández, E., Paternostro, V., The Zak transform and the structure of spaces invariant by the action of an LCA group (2015) J. Funct. Anal., 269, pp. 1327-1358
Benedetto, J.J., Li, S., Multiresolution analysis frames with applications (1993) ICASSP’93, 3, pp. 304-307. , Minneapolis
Benedetto, J.J., Walnut, D.F., Gabor frames for L2 and related spaces (1994) Wavelets: Mathematics and Applications, Chapter 3, , Benedetto JJ, Frazier MW, (eds), CRC Press, Boca Raton
Benedetto, J.J., Li, S., The theory of multiresolution analysis frames and applications to filter banks (1998) Appl. Comput. Harmon. Anal., 5, pp. 389-427
Bownik, M., The structure of shift-invariant subspaces of L2(Rn) (2000) J. Funct. Anal., 177 (2), pp. 282-309
Christensen, O., (2003) An introduction to frames and Riesz bases, , Birkhäuser, Basel
Connes, A., (1994) Noncommutative Geometry, , Academic Press, Cambridge
Conway, J.B., (1990) A Course in Functional Analysis, , 2, Springer, Berlin
Conway, J.B., (2000) A Course in Operator Theory, , AMS, Providence
Daubechies, I., (1992) Ten Lectures on Wavelets, , SIAM, New Delhi
de Boor, C., DeVore, R.A., Ron, A., Approximation from shift invariant subspaces of L2(Rd) (1994) Trans. Am. Math. Soc., 341, pp. 787-806
de Boor, C., DeVore, R.A., Ron, A., The structure of finitely generated shift-invariant spaces in L2(Rd) (1994) J. Funct. Anal., 119, pp. 37-78
Folland, G.B., (1995) A Course in Abstract Harmonic Analysis, , CRC Press, Boca Raton
Halmos, P.R., (1951) Introduction to Hilbert Spaces and the Theory of Spectral Multiplicity, , Chelsea Publishing Company, London
Heil, C.E., Powell, A.M., Gabor Schauder bases and the Balian–Low theorem (2006) J. Math. Phys., 47, pp. 1-21
Hernández, E., Weiss, G., (1996) A First Course on Wavelets, , CRC Press, Boca Raton
Hernández, E., Šikić, H., Weiss, G., Wilson, E., Cyclic subspaces for unitary representations of LCA groups; generalized Zak transform (2010) Colloq. Math., 118, pp. 313-332
Junge, M., Mei, T., Parcet, J., Smooth Fourier multipliers on group von Neumann algebras (2014) Geom. Funct. Anal., 24, pp. 1913-1980
Kadison, R.V., Ringrose, J.R., (1983) Fundamentals of the Theory of Operator Algebras, Vol. 1 and 2, , Academic Press, Cambridge
Kubrusly, C.S., (2011) The Elements of Operator Theory, , 2, Birkhäuser, Basel
Meyer, Y., (1992) Wavelets and Operators, , Cambridge University Press, Cambridge
Nelson, E., Notes on non-commutative integration (1974) J. Funct. Anal., 15, pp. 103-116
Pisier, G., Xu, Q., Non-Commutative Lp spaces (2003) Handbook of the Geometry of Banach Spaces, Chapter 34, 2. , Johnson WB, Lindenstrauss J, (eds), Elsevier, Amsterdam
Rudin, W., (1973) Functional Analysis, , McGraw-Hill Book Company, New York City
Takesaki, M., (2003) Theory of Operator Algebras, Vol. 1 and 2, , Springer, Berlin
Terp, M., (1981) Lp -spaces associated with von Neumann Algebras, , Copenhagen University, Copenhagen
ISSN:00100757
DOI:10.1007/s13348-017-0202-x