Group Riesz and frame sequences: the Bracket and the Gramian
Given a discrete group and a unitary representation on a Hilbert space H, we prove that the notions of operator Bracket map and Gramian coincide on a dense set of H. As a consequence, combining this result with known frame theory, we can recover all previous Bracket characterizations of Riesz and fr...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Springer-Verlag Italia s.r.l.
2018
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| Sumario: | Given a discrete group and a unitary representation on a Hilbert space H, we prove that the notions of operator Bracket map and Gramian coincide on a dense set of H. As a consequence, combining this result with known frame theory, we can recover all previous Bracket characterizations of Riesz and frame sequences generated by a single element under a unitary representation. © 2017, Universitat de Barcelona. |
|---|---|
| Bibliografía: | Barbieri, D., Hernández, E., Parcet, J., Riesz and frame systems generated by unitary actions of discrete groups (2014) Appl. Comput. Harmon. Anal., 39, pp. 369-399 Barbieri, D., Hernández, E., Paternostro, V., The Zak transform and the structure of spaces invariant by the action of an LCA group (2015) J. Funct. Anal., 269, pp. 1327-1358 Benedetto, J.J., Li, S., Multiresolution analysis frames with applications (1993) ICASSP’93, 3, pp. 304-307. , Minneapolis Benedetto, J.J., Walnut, D.F., Gabor frames for L2 and related spaces (1994) Wavelets: Mathematics and Applications, Chapter 3, , Benedetto JJ, Frazier MW, (eds), CRC Press, Boca Raton Benedetto, J.J., Li, S., The theory of multiresolution analysis frames and applications to filter banks (1998) Appl. Comput. Harmon. Anal., 5, pp. 389-427 Bownik, M., The structure of shift-invariant subspaces of L2(Rn) (2000) J. Funct. Anal., 177 (2), pp. 282-309 Christensen, O., (2003) An introduction to frames and Riesz bases, , Birkhäuser, Basel Connes, A., (1994) Noncommutative Geometry, , Academic Press, Cambridge Conway, J.B., (1990) A Course in Functional Analysis, , 2, Springer, Berlin Conway, J.B., (2000) A Course in Operator Theory, , AMS, Providence Daubechies, I., (1992) Ten Lectures on Wavelets, , SIAM, New Delhi de Boor, C., DeVore, R.A., Ron, A., Approximation from shift invariant subspaces of L2(Rd) (1994) Trans. Am. Math. Soc., 341, pp. 787-806 de Boor, C., DeVore, R.A., Ron, A., The structure of finitely generated shift-invariant spaces in L2(Rd) (1994) J. Funct. Anal., 119, pp. 37-78 Folland, G.B., (1995) A Course in Abstract Harmonic Analysis, , CRC Press, Boca Raton Halmos, P.R., (1951) Introduction to Hilbert Spaces and the Theory of Spectral Multiplicity, , Chelsea Publishing Company, London Heil, C.E., Powell, A.M., Gabor Schauder bases and the Balian–Low theorem (2006) J. Math. Phys., 47, pp. 1-21 Hernández, E., Weiss, G., (1996) A First Course on Wavelets, , CRC Press, Boca Raton Hernández, E., Šikić, H., Weiss, G., Wilson, E., Cyclic subspaces for unitary representations of LCA groups; generalized Zak transform (2010) Colloq. Math., 118, pp. 313-332 Junge, M., Mei, T., Parcet, J., Smooth Fourier multipliers on group von Neumann algebras (2014) Geom. Funct. Anal., 24, pp. 1913-1980 Kadison, R.V., Ringrose, J.R., (1983) Fundamentals of the Theory of Operator Algebras, Vol. 1 and 2, , Academic Press, Cambridge Kubrusly, C.S., (2011) The Elements of Operator Theory, , 2, Birkhäuser, Basel Meyer, Y., (1992) Wavelets and Operators, , Cambridge University Press, Cambridge Nelson, E., Notes on non-commutative integration (1974) J. Funct. Anal., 15, pp. 103-116 Pisier, G., Xu, Q., Non-Commutative Lp spaces (2003) Handbook of the Geometry of Banach Spaces, Chapter 34, 2. , Johnson WB, Lindenstrauss J, (eds), Elsevier, Amsterdam Rudin, W., (1973) Functional Analysis, , McGraw-Hill Book Company, New York City Takesaki, M., (2003) Theory of Operator Algebras, Vol. 1 and 2, , Springer, Berlin Terp, M., (1981) Lp -spaces associated with von Neumann Algebras, , Copenhagen University, Copenhagen |
| ISSN: | 00100757 |
| DOI: | 10.1007/s13348-017-0202-x |