Group Riesz and frame sequences: the Bracket and the Gramian

Given a discrete group and a unitary representation on a Hilbert space H, we prove that the notions of operator Bracket map and Gramian coincide on a dense set of H. As a consequence, combining this result with known frame theory, we can recover all previous Bracket characterizations of Riesz and fr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Barbieri, D.
Otros Autores: Hernández, E., Paternostro, V.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer-Verlag Italia s.r.l. 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06357caa a22007217a 4500
001 PAPER-25213
003 AR-BaUEN
005 20230518205714.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85044952238 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Barbieri, D. 
245 1 0 |a Group Riesz and frame sequences: the Bracket and the Gramian 
260 |b Springer-Verlag Italia s.r.l.  |c 2018 
270 1 0 |m Barbieri, D.; Universidad Autónoma de MadridSpain; email: davide.barbieri@uam.es 
506 |2 openaire  |e Política editorial 
504 |a Barbieri, D., Hernández, E., Parcet, J., Riesz and frame systems generated by unitary actions of discrete groups (2014) Appl. Comput. Harmon. Anal., 39, pp. 369-399 
504 |a Barbieri, D., Hernández, E., Paternostro, V., The Zak transform and the structure of spaces invariant by the action of an LCA group (2015) J. Funct. Anal., 269, pp. 1327-1358 
504 |a Benedetto, J.J., Li, S., Multiresolution analysis frames with applications (1993) ICASSP’93, 3, pp. 304-307. , Minneapolis 
504 |a Benedetto, J.J., Walnut, D.F., Gabor frames for L2 and related spaces (1994) Wavelets: Mathematics and Applications, Chapter 3, , Benedetto JJ, Frazier MW, (eds), CRC Press, Boca Raton 
504 |a Benedetto, J.J., Li, S., The theory of multiresolution analysis frames and applications to filter banks (1998) Appl. Comput. Harmon. Anal., 5, pp. 389-427 
504 |a Bownik, M., The structure of shift-invariant subspaces of L2(Rn) (2000) J. Funct. Anal., 177 (2), pp. 282-309 
504 |a Christensen, O., (2003) An introduction to frames and Riesz bases, , Birkhäuser, Basel 
504 |a Connes, A., (1994) Noncommutative Geometry, , Academic Press, Cambridge 
504 |a Conway, J.B., (1990) A Course in Functional Analysis, , 2, Springer, Berlin 
504 |a Conway, J.B., (2000) A Course in Operator Theory, , AMS, Providence 
504 |a Daubechies, I., (1992) Ten Lectures on Wavelets, , SIAM, New Delhi 
504 |a de Boor, C., DeVore, R.A., Ron, A., Approximation from shift invariant subspaces of L2(Rd) (1994) Trans. Am. Math. Soc., 341, pp. 787-806 
504 |a de Boor, C., DeVore, R.A., Ron, A., The structure of finitely generated shift-invariant spaces in L2(Rd) (1994) J. Funct. Anal., 119, pp. 37-78 
504 |a Folland, G.B., (1995) A Course in Abstract Harmonic Analysis, , CRC Press, Boca Raton 
504 |a Halmos, P.R., (1951) Introduction to Hilbert Spaces and the Theory of Spectral Multiplicity, , Chelsea Publishing Company, London 
504 |a Heil, C.E., Powell, A.M., Gabor Schauder bases and the Balian–Low theorem (2006) J. Math. Phys., 47, pp. 1-21 
504 |a Hernández, E., Weiss, G., (1996) A First Course on Wavelets, , CRC Press, Boca Raton 
504 |a Hernández, E., Šikić, H., Weiss, G., Wilson, E., Cyclic subspaces for unitary representations of LCA groups; generalized Zak transform (2010) Colloq. Math., 118, pp. 313-332 
504 |a Junge, M., Mei, T., Parcet, J., Smooth Fourier multipliers on group von Neumann algebras (2014) Geom. Funct. Anal., 24, pp. 1913-1980 
504 |a Kadison, R.V., Ringrose, J.R., (1983) Fundamentals of the Theory of Operator Algebras, Vol. 1 and 2, , Academic Press, Cambridge 
504 |a Kubrusly, C.S., (2011) The Elements of Operator Theory, , 2, Birkhäuser, Basel 
504 |a Meyer, Y., (1992) Wavelets and Operators, , Cambridge University Press, Cambridge 
504 |a Nelson, E., Notes on non-commutative integration (1974) J. Funct. Anal., 15, pp. 103-116 
504 |a Pisier, G., Xu, Q., Non-Commutative Lp spaces (2003) Handbook of the Geometry of Banach Spaces, Chapter 34, 2. , Johnson WB, Lindenstrauss J, (eds), Elsevier, Amsterdam 
504 |a Rudin, W., (1973) Functional Analysis, , McGraw-Hill Book Company, New York City 
504 |a Takesaki, M., (2003) Theory of Operator Algebras, Vol. 1 and 2, , Springer, Berlin 
504 |a Terp, M., (1981) Lp -spaces associated with von Neumann Algebras, , Copenhagen University, Copenhagen 
520 3 |a Given a discrete group and a unitary representation on a Hilbert space H, we prove that the notions of operator Bracket map and Gramian coincide on a dense set of H. As a consequence, combining this result with known frame theory, we can recover all previous Bracket characterizations of Riesz and frame sequences generated by a single element under a unitary representation. © 2017, Universitat de Barcelona.  |l eng 
536 |a Detalles de la financiación: Ministerio de Economía y Competitividad 
536 |a Detalles de la financiación: Acknowledgements D. Barbieri was supported by a Marie Curie Intra European Fellowship (Prop. N. 626055) within the 7th European Community Framework Programme. D. Barbieri and E. Hernández were supported by Grants MTM2013-40945-P and MTM2016-76566-P (Ministerio de Economía y Competitividad, Spain). V. Paternostro by Grants UBACyT 2002013010022BA and 20020150200037BA, and CONICET-PIP 11220110101018. 
593 |a Universidad Autónoma de Madrid, Madrid, 28049, Spain 
593 |a Universidad de Buenos Aires and IMAS-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, 1428, Argentina 
690 1 0 |a BRACKET MAP 
690 1 0 |a GRAMIAN OPERATOR 
690 1 0 |a GROUP VON NEUMANN ALGEBRAS 
690 1 0 |a INVARIANT SUBSPACES 
690 1 0 |a RIESZ AND FRAME SEQUENCES 
700 1 |a Hernández, E. 
700 1 |a Paternostro, V. 
773 0 |d Springer-Verlag Italia s.r.l., 2018  |g v. 69  |h pp. 221-236  |k n. 2  |p Collect. Math.  |x 00100757  |t Collectanea Mathematica 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044952238&doi=10.1007%2fs13348-017-0202-x&partnerID=40&md5=0e018b528eb0e2696e77d9552e6204d9  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s13348-017-0202-x  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00100757_v69_n2_p221_Barbieri  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00100757_v69_n2_p221_Barbieri  |y Registro en la Biblioteca Digital 
961 |a paper_00100757_v69_n2_p221_Barbieri  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86166