An optimal matching problem with constraints

We deal with an optimal matching problem with constraints, that is, we want to transport two measures with the same total mass in RN to a given place (the target set), where they will match and in which we have constraints on the amount of matter we can take to points in the target set. This transpo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Mazón, J.M
Otros Autores: Rossi, J.D, Toledo, J.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer-Verlag Italia s.r.l. 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06698caa a22006617a 4500
001 PAPER-25209
003 AR-BaUEN
005 20230518205713.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85041893025 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Mazón, J.M. 
245 1 3 |a An optimal matching problem with constraints 
260 |b Springer-Verlag Italia s.r.l.  |c 2018 
270 1 0 |m Mazón, J.M.; Departament d’Anàlisi Matemàtica, Universidad de ValènciaSpain; email: mazon@uv.es 
506 |2 openaire  |e Política editorial 
504 |a Ambrosio, L., Lecture notes on optimal transport problems (1812) Mathematical Aspects of Evolving Interfaces (Funchal, 2000), Lecture Notes in Mathematics, pp. 1-52. , Springer, Berlin 
504 |a Barrett, J.W., Prigozhin, L., Partial L1 Monge–Kantorovich problem: variational formulation and numerical approximation (2009) Interfaces Free Bound., 11, pp. 201-238 
504 |a Brezis, H., (2011) Functional Analysis. Sobolev Spaces and Partial Differential Equations. Universitext, , Springer, New York 
504 |a Carlier, G., Duality and existence for a class of mass transportation problems and economic applications (2003) Adv. Math. Econ., 5, pp. 1-21 
504 |a Carlier, G., Ekeland, I., Matching for teams (2010) Econ. Theory, 42, pp. 397-418 
504 |a Champion, T., De Pascale, L., The Monge problem in Rd (2011) Duke Math. J., 157, pp. 551-572 
504 |a Chiappori, P.-A., McCann, R., Nesheim, L., Hedonic prices equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness (2010) Econ. Theory, 42, pp. 317-354 
504 |a Ekeland, I., An optimal matching problem (2005) ESAIM COCV, 11, pp. 57-71 
504 |a Ekeland, I., Existence, uniqueness and efficiency of equilibrium in hedonic markets with multidimensional types (2010) Econ. Theory, 42 (2), pp. 275-315 
504 |a Ekeland, I., Notes on optimal transportation (2010) Econ. Theory, 42 (2), pp. 437-459 
504 |a Ekeland, I., Hecckman, J.J., Nesheim, L., Identification and estimates of hedonic models (2004) J. Polit. Econ., 112, pp. S60-S109 
504 |a Evans, L.C., (1998) Partial Differential Equations. Graduate Studies Mathematics, 19. , American Mathematical Society, Providence 
504 |a Evans, L.C., Partial differential equations and Monge–Kantorovich mass transfer (1999) Current Developments in Mathematics, 1997, pp. 65-126. , (Cambridge, MA), International Press, Boston 
504 |a Evans, L.C., Gangbo, W., Differential equations methods for the Monge–Kantorovich mass transfer problem (1999) Mem. Am. Math. Soc., 137, p. 653 
504 |a Fan, K., Minimax theorems (1953) Proc. Natl. Acad. Sci., 39, pp. 42-47 
504 |a Igbida, N., Mazón, J.M., Rossi, J.D., Toledo, J.J., A Monge–Kantorovich mass transport problem for a discrete distance (2011) J. Funct. Anal., 260, pp. 3494-3534 
504 |a Kantorovich, L.V., On the tranfer of masses (1942) Dokl. Nauk. SSSR, 37, pp. 227-229 
504 |a Mazón, J.M., Rossi, J.D., Toledo, J.J., An optimal transportation problem with a cost given by the euclidean distance plus import/export taxes on the boundary (2014) Rev. Mat. Iberoam., 30 (1), pp. 277-308 
504 |a Mazón, J.M., Rossi, J.D., Toledo, J.J., An optimal matching problem for the Euclidean distance (2014) SIAM J. Math. Anal., 46, pp. 233-255 
504 |a Mazón, J.M., Rossi, J.D., Toledo, J.J., Optimal matching problems with costs given by Finsler distances (2015) Commun. Pure Appl. Anal., 14, pp. 229-244 
504 |a Mazón, J.M., Rossi, J.D., Toledo, J.J., Optimal mass transport on metric graphs (2015) SIAM J. Optim., 25, pp. 1609-1632 
504 |a Villani, C., (2003) Topics in Optimal Transportation. Graduate Studies in Mathematics, 58. , AMS, Providence 
504 |a Villani, C., (2009) Optimal Transport. Old and New. Grundlehren der MathematischenWissenschaften (Fundamental Principles of Mathematical Sciences), 338. , Springer, Berlin 
520 3 |a We deal with an optimal matching problem with constraints, that is, we want to transport two measures with the same total mass in RN to a given place (the target set), where they will match and in which we have constraints on the amount of matter we can take to points in the target set. This transport has to be done optimally, minimizing the total transport cost, that in our case is given by the sum of the Euclidean distances that each measure is transported. Here we show that such a problem has a solution. First, we solve the problem using mass transport arguments and next we perform a method to approximate the solution of the problem taking limit as p→ ∞ in a p-Laplacian type variational problem. In the particular case in which the target set is contained in a hypersurface, we deal with an optimal transport problem through a membrane, that is, we want to transport two measures which are located in different locations separated by a membrane (the hypersurface) which only let through a predetermined amount of matter. © 2018, Universidad Complutense de Madrid.  |l eng 
536 |a Detalles de la financiación: Ministerio de Economía y Competitividad 
536 |a Detalles de la financiación: Federación Española de Enfermedades Raras, FEDER, MTM2015-70227-P 
536 |a Detalles de la financiación: Acknowledgements The authors have been partially supported by the Spanish MINECO and FEDER, Project MTM2015-70227-P. 
593 |a Departament d’Anàlisi Matemàtica, Universidad de València, Valencia, Spain 
593 |a Departamento de Matemáticas, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a MASS TRANSPORT THEORY 
690 1 0 |a MATCHING PROBLEMS 
690 1 0 |a P-LAPLACIAN EQUATION 
700 1 |a Rossi, J.D. 
700 1 |a Toledo, J. 
773 0 |d Springer-Verlag Italia s.r.l., 2018  |g v. 31  |h pp. 407-447  |k n. 2  |p Rev. Mat. Complutense  |x 11391138  |t Revista Matematica Complutense 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041893025&doi=10.1007%2fs13163-018-0256-7&partnerID=40&md5=4020027d526be1eca95c9d1cacb2f68f  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s13163-018-0256-7  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_11391138_v31_n2_p407_Mazon  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_11391138_v31_n2_p407_Mazon  |y Registro en la Biblioteca Digital 
961 |a paper_11391138_v31_n2_p407_Mazon  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86162