Evidence of cyclic climatic changes recorded in clay mineral assemblages from a continental Paleocene-Eocene sequence, northwestern Argentina

The continental Paleocene-Eocene sequence investigated in this study belongs to the Salta Group, deposited in an intracontinental rift, the Salta Basin (NW Argentina), that evolved from the lower Cretaceous to the middle Paleogene, and is subdivided into the Pirgua, the Balbuena and the Santa Barbar...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Do Campo, M.
Otros Autores: Bauluz, B., del Papa, C., White, T., Yuste, A., Mayayo, M.J
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2018
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 19910caa a22014897a 4500
001 PAPER-25199
003 AR-BaUEN
005 20230518205712.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85044149445 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Do Campo, M. 
245 1 0 |a Evidence of cyclic climatic changes recorded in clay mineral assemblages from a continental Paleocene-Eocene sequence, northwestern Argentina 
260 |b Elsevier B.V.  |c 2018 
270 1 0 |m Do Campo, M.; Universidad de Buenos Aires and INGEIS (CONICET – UBA), Ciudad Universitaria, Intendente Güiraldes s/n, Argentina; email: docampo@ingeis.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Andrews, E., White, T., del Papa, C., Paleosol-based paleoclimate reconstruction of the Paleocene-Eocene Thermal Maximum, northern Argentina (2017) Palaeogeography, Palaeoclimatology, Palaeoecology, 471, pp. 181-195 
504 |a Baczynski, A.A., McInerney, F.A., Scott, L.W., Kraus, M.J., Bloch, J.I., Secord, R., Constraining paleohydrologic change during the Paleocene-Eocene Thermal Maximum in the continental interior of North America (2017) Palaeogeography, Palaeoclimatology, Palaeoecology, 465, pp. 237-246 
504 |a Bauluz, B., Yuste, A., Mayayo, M.J., Canudo, J.I., Early kaolinization of detrital weald facies in the Galve sub-basin (Central Iberian Chain, north-east Spain) and its relationship to palaeoclimate (2014) Cretaceous Research, 50, pp. 214-227 
504 |a Bridge, J.S., Rivers and Floodplains, Forms, Processes, and Sedimentary Record (2003), Blackwell Publishing Oxford (491 pp.); Bullock, P., Fedoroff, N., Jongerius, A., Stoops, G., Tursina, T., Handbook for Soil Thin Section Description (1985), Waine Research Wolverhampton (152 pp.); Buurman, E., Meijer, E.L., van Wijck, J.H., Weathering of chlorite and vermiculite in ultramafic rocks of Cabo Ortegal, northwestern Spain (1988) Clays and Clay Minerals, 36, pp. 263-269 
504 |a Chamley, H., Clay Sedimentology (1989), Springer Verlag Berlin (623 pp.); Charles, A.J., Condon, D.J., Harding, I.C., Pälike, H., Marshall, J.E.A., Cui, Y., Kump, L., Croudace, I.W., Constraints on the numerical age of the Paleocene Eocene boundary (2011) Geochemistry, Geophysics, Geosystems, 12 
504 |a Clechenko, E., Kelly, D., Harrington, G., Stiles, C., Terrestrial records of a regional weathering profile at the Paleocene-Eocene boundary in the Williston Basin of North Dakota (2007) Geological Society of America Bulletin, 119, pp. 428-442 
504 |a del Papa, C.E., Sedimentation on a ramp type lake margin: Paleocene-Eocene Maíz Gordo Formation, northwestern Argentina (1999) Journal of South American Earth Sciences, 12, pp. 389-400 
504 |a del Papa, C.E., Salfity, J.A., Non-marine Paleogene sequences, Salta Group, Northwest Argentina (1999) Acta Geologica Hispánica, 34, pp. 105-122 
504 |a del Papa, C., Kirschbaum, A., Powell, J., Brod, A., Hongn, F., Pimentel, M., Sedimentological, geochemical and paleontological insights applied to continental omission surfaces: a new approach for reconstructing Eocene foreland basin in NW Argentina (2010) Journal of South American Earth Sciences, 29, pp. 327-345 
504 |a Do Campo, M., del Papa, C., Jiménez-Millán, J., Nieto, F., Clay mineral assemblages and analcime formation in a Palaeogene fluvial–lacustrine sequence (Maíz Gordo Formation Palaeogen) from northwestern Argentina (2007) Sedimentary Geology, 201, pp. 56-74 
504 |a Domingo, L., López Martinez, N., Leng, M.J., Grimes, S.T., The Paleocene Eocene Thermal Maximum record in the organic matter of the Claret and Tendruy continental sections (South central Pyrenees, Lleida, Spain) (2009) Earth and Planetary Science Letters, 281, pp. 226-237 
504 |a Farley, K.A., Eltgroth, S.F., An alternative age model for the Paleocene–Eocene thermal maximum using extraterrestrial 3He (2003) Earth and Planetary Science Letters, 208, pp. 135-148 
504 |a Genise, J., Cantil, L., Bellosi, E., Lower Paleogene complex ant nests from Argentina: evidence for early polydomy in ants? (2016) PALAIOS, 31, pp. 549-562 
504 |a Güven, N., Smectites (1988) Hydrous Pyllosilicates, Mineralogical Society of America, Reviews in Mineralogy, 19, pp. 497-559. , S.W. Bailey 
504 |a Hajek, E.A., Wolinsky, M.A., Simplified process modeling of river avulsion and alluvial architecture: connecting models and field data (2012) Sedimentary Geology, 257-260, pp. 1-30 
504 |a Hallan, A., Grose, J.A., Ruffell, A.H., Paleoclimatic significance of changes in clay mineralogy across the Jurassic Cretaceous boundary in England and France (1991) Palaeogeography, Palaeoclimatology, Palaeoecology, 81, pp. 173-187 
504 |a Hyland, E.G., Sheldon, N.D., Cotton, J.M., Terrestrial evidence for a two-stage mid-Paleocene biotic event (2015) Palaeogeography, Palaeoclimatology, Palaeoecology, 417, pp. 371-378 
504 |a Hyland, E.G., Sheldon, N.D., Comment on “Paleosol-based paleoclimate reconstruction of the Paleocene-Eocene ThermalMaximum, northern Argentina” by Andrews, E., White, T., and del Papa, C (2017) Palaeogeography, Palaeoclimatology, Palaeoecology, 471, pp. 181-195 
504 |a Hyland, E.G., Sheldon, N.D., Cotton, J.M., Constraining the early Eocene climatic optimum: a terrestrial interhemispheric comparison (2017) Geological Society of America Bulletin, 129, pp. 244-252 
504 |a Kennett, J.P., Stott, L.D., Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene (1991) Nature, 353, pp. 225-229 
504 |a Koch, P.L., Zachos, J.C., Gingerich, P.D., Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary (1992) Nature, 358, pp. 319-322 
504 |a Koch, P.L., Zachos, J.C., Dettman, D.L., Stable isotope stratigraphy and paleoclimatology of the Paleogene Bighorn Basin (Wyoming, USA) (1995) Palaeogeography, Palaeoclimatology, Palaeoecology, 115, pp. 61-89 
504 |a Koch, P., Clyde, W., Hepple, R., Fogel, M., Wing, S., Zachos, J., Carbon and oxygen isotope records from paleosols spanning the Paleocene-Eocene boundary, Bighorn Basin, Wyoming (2003) Causes and Consequences of Globally Warm Climates in the Earl Paleogene, Geological Society of America Special Paper, 369, pp. 49-64. , S. Wing P. Gingerich B. Schmitz E. Thomas 
504 |a Kraus, M.J., Riggins, S., Transient drying during the Paleocene-Eocene Thermal Maximum (PETM): analysis of paleosols in the Bighorn Basin, Wyoming (2007) Palaeogeography, Palaeoclimatology, Palaeoecology, 245, pp. 444-461 
504 |a Kretz, R., Symbols of rock-forming minerals (1983) American Mineralogist, 68, pp. 277-279 
504 |a Marquillas, R.A., del Papa, C.E., Sabino, I., Sedimentary aspects and paleoenvironmental evolution of a rift basin: Salta Group (Cretaceous-Paleogene), northwestern Argentina (2005) International Journal of Earth Sciences, 94, pp. 94-113 
504 |a Martin, J.D., Using XPowder: a software package for powder X-ray diffraction analysis (2004), www.xpowder.com, 105 pp., Retrieved 18 April 2007 from; McInerney, F.A., Wing, S.L., The Paleocene-Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future (2011) Annual Review of Earth and Planetary Sciences, 39, pp. 489-516 
504 |a Moore, D.M., Reynolds, R.C., X-ray Diffraction and the Identification and Analysis of Clay Minerals (1997), Oxford University Press New York (378 pp.); Mudelsee, M., Bickert, T., Lear, C.H., Lohmann, G., Cenozoic climate changes: a review based on time series analysis of marine benthic δ18O records (2014) Reviews of Geophysics, 52, pp. 333-374 
504 |a Murakami, T., Isobe, H., Sato, T., Ohnuki, T., Weathering of chlorite in a quartz-chlorite schist. Mineralogical and chemical changes (1996) Clays and Clay Minerals, 44, pp. 244-256 
504 |a Nanson, G.C., Croke, J.C.A., Genetic classification of floodplains (1992) Geomorphology, 4, pp. 459-486 
504 |a Nichols, G., Sedimentology and Stratigraphy (2009), Second edition Wiley-Blackwell Oxford (411 pp.); Norris, R.D., Röhl, U., Carbon cycling and chronology of climate warming during the Paleocene/Eocene boundary (1999) Nature, 401, pp. 775-778 
504 |a Quattrocchio, M.E., Volkheimer, W., Marquillas, R.A., Salfity, J.A., Palynostratigraphy, palaeobiogeography and evolutionary significance of the late Senonian and early Paleogene palynofloras of the Salta group, northern Argentina (2005) Revista Española de Micropaleontología, 37, pp. 259-272 
504 |a Raucskik, B., Varga, A., Climato-environmental controls on clay minerals of the Hettangian-Bajocian succession of the Mecsek Mountains (Hungary): an evidence for extreme continental weathering during the early Toarcian oceanic anoxic event (2008) Palaeogeography, Palaeoclimatology, Palaeoecology, 265, pp. 1-13 
504 |a Righi, D., Meunier, A., Origin of clays by rock weathering and soil formation (1995) Origin and Mineralogy of Clays: Clays and the Environment, pp. 43-161. , B. Velde Springer-Verlag Heidelberg 
504 |a Robert, C., Kennett, J., Antarctic subtropical humid episode at the Paleocene-Eocene boundary: clay mineral evidence (1994) Geology, 22, pp. 211-214 
504 |a Röhl, U., Westerhold, T., Bralower, T.J., Zachos, J.C., On the duration of the Paleocene Eocene Thermal Maximum (PETM) (2007) Geochemistry, Geophysics, Geosystems, 8 
504 |a Ruffell, A., McKinley, J.M., Worden, R.H., Europe comparison of clay mineral stratigraphy to other proxy palaeoclimate indicators in the Mesozoic of NW Europe (2002) Philosophical Transactions of the Royal Society of London A, 360, pp. 675-693 
504 |a Rust, B.R., Structure and process in a braided river (1972) Sedimentology, 18, pp. 221-245 
504 |a Salfity, J.A., Marquillas, R.A., Tectonic and sedimentary evolution of the Cretaceous-Eocene Salta Group Basin, Argentina (1994) Cretaceous Tectonics of the Andes, , J.A. Salfity Springer Braunschweig (348 pp.) 
504 |a Salfity, J.A., Marquillas, R.A., La cuenca Cretácico-Terciaria del Norte Argentino (1999) Geología Argentina. Subsecretaría de Minería de la Nación, SEGEMAR, An 29, Buenos Aires, pp. 613-626. , R. Caminos 
504 |a Schmitz, B., Pujalte, V., Abrupt increase in seasonal extreme precipitation at the Paleocene Eocene boundary (2007) Geology, 35, pp. 215-218 
504 |a Sheldon, N.D., Tabor, N.J., Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols (2009) Earth-Science Reviews, 95, pp. 1-52 
504 |a Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Damtsé, J.S.S., Dickens, G.R., the Expedition 302 Scientists, Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum (2006) Nature, 441, pp. 610-613 
504 |a Sluijs, A., Bowen, G.J., Brinkhuis, H., Lourens, L.J., Thomas, E., The Palaeocene-Eocene Thermal Maximum super greenhouse: biotic and geochemical signatures, age models and mechanisms of global change (2007) Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies, The Micropalaeontological Society, Special Publications, pp. 323-349. , M. Williams A.M. Haywood F.J. Gregory D.N. Schmidt The Geological Society London 
504 |a Tripati, A., Elderfield, H., Deep-sea temperature and circulation changes at the Paleocene-Eocene Thermal Maximum (2005) Science, 308, pp. 1894-1898 
504 |a Vergani, G., Starck, D., Aspectos estructurales del Valle de Lerma al sur de la Ciudad de Salta (1989) Boletín de Información Petrolera, 16, pp. 2-9 
504 |a Viramonte, J.G., Kay, S.M., Becchio, R., Escayola, M., Novitski, I., Cretaceous rift related magmatism in central-western South America (1999) Journal of South American Earth Sciences, 12, pp. 109-121 
504 |a Westerhold, T., Röhl, U., Raffi, I., Fornaciari, E., Monechi, S., Reale, V., Bowles, J., Evans, H.F., Astronomical calibration of the Paleocene time (2008) Palaeogeography, Palaeoclimatology, Palaeoecology, 257, pp. 377-403 
504 |a White, P.D., Schiebout, J., Paleogene paleosols and changes in pedogenesis during the initial Eocene Thermal Maximum: Big Bend National Park, Texas, USA (2008) Geological Society of America Bulletin, 12, pp. 1347-1361 
504 |a White, T., del Papa, C., Andrews, E., Chronostratigraphy of Paleogene strata, Salta Basin, northwestern Argentina: a reply to Hyland and Sheldon's comment (2017) Palaeogeography, Palaeoclimatology, Palaeoecology, , (in press) 
504 |a Whitney, D.L., Evans, B.W., Abbreviations for names of rock-forming minerals (2010) American Mineralogist, 95, pp. 185-187 
504 |a Zachos, J.C., Lohmann, K.C., Walker, J.C.G., Wise, S.W., Abrupt climate change and transient climates during the Paleogene: a marine perspective (1993) The Journal of Geology, 101, pp. 191-213 
504 |a Zachos, J., Pagani, M., Sloam, L., Thomas, E., Billups, K., Trends, rhythms, aberrations in global climate 65 Ma to present (2001) Science, 292, pp. 686-693 
504 |a Zachos, J.C., Wara, M.W., Bohaty, S., Delaney, M.L., Petrizzo, M.R., Brill, A., Bralower, T.J., Premoli-Silva, I., A transient rise in tropical sea surface temperature during the Paleocene-Eocene thermal maximum (2003) Science, 302, pp. 1551-1554 
504 |a Zachos, J.C., Röhl, U., Schellenberg, S.A., Sluijs, A., Hodell, D.A., Kelly, D.C., Thomas, E., Kroon, D., Rapid acidification of the ocean during the Paleocene-Eocene Thermal Maximum (2005) Science, 308, pp. 1611-1615 
504 |a Zachos, J.C., Gerald, R., Dickens, G.R., Zeebeet, R.E., An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics (2008) Nature, 451, pp. 279-283 
504 |a Zachos, J.C., McCarren, H., Murphy, B., Röhl, U., Westerhold, T., Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: implications for the origin of hyperthermals (2010) Earth and Planetary Science Letters, 299, pp. 242-249 
504 |a Zeebe, R., Ridgwell, A., Zachos, J., Anthropogenic carbon release rate unprecedented during the past 66 million years (2016) Nature Geoscience, 9, pp. 325-329 
520 3 |a The continental Paleocene-Eocene sequence investigated in this study belongs to the Salta Group, deposited in an intracontinental rift, the Salta Basin (NW Argentina), that evolved from the lower Cretaceous to the middle Paleogene, and is subdivided into the Pirgua, the Balbuena and the Santa Barbara Subgroups. The Maíz Gordo Formation (200 m thick) is the middle unit of the Santa Bárbara Subgroup, deposited during late post-rift sedimentation. We studied the mineralogy of fine-grained horizons of this formation by X-ray diffraction and Scanning Electron Microscopy (SEM) in order to examine the connection between vertical changes in clay mineralogy in alluvial sediments and paleosols, and global paleoclimatic changes registered during the Paleogene. Paleosols vary from calcic vertisols in the lowermost levels, to inseptisols and gleysols in intermediate positions, to gleyed oxisols in the upper section, indicating increased chemical weathering through time. Clay mineral relative abundances vary with a general increase in kaolinite content from bottom to top. However, at one site there are significant variations in kaolinite/muscovite (Kln/Ms) that define five cycles of kaolinite abundance and Kln/Ms. that indicate cyclic patterns of paleoprecipitation and paleotemperature. These are interpreted as several short-lived hyperthermals during the Paleocene-early Eocene in the Southern Hemisphere, which correlate with well-established episodes of warmth documented from the Northern Hemisphere. © 2018 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Gobierno de Aragón 
536 |a Detalles de la financiación: European Social Fund, ESF, E45 
536 |a Detalles de la financiación: PICT-2011-0407 
536 |a Detalles de la financiación: The help of Cristina Gallego with FESEM (University of Zaragoza) was essential for the present work. The authors would like to acknowledge the use of the Servicio General de Apoyo a la Investigación-SAI, University of Zaragoza. A. Baleirón prepared the samples for X-ray diffraction, and G. Giordanengo helped with the digital figures. This work was partially financed by Research Projects CGL2011-30153-C02-01 , CGL2013-46169-C2-1-P ( Spanish Ministry of Science ), and the Gobierno de Aragón and the European Social Fund ( E45 ) (Grupos Consolidados) and also ANCyT - PICT-2011-0407 grant (Argentina). C. de Papa thanks PUE-CICTERRA 2016. The authors also like to thank the Ministerio de Ambiente y Desarrollo Sustentable, Salta Province, the Programa Areas Protegidas, Secretaria de Ambiente, Salta Government and the guards of the Reserva Manejada Quebrada de las Conchas for permission to work in the Quebrada de las Conchas Park, and also to the Salta branch of Parques Nacionales and Parque Nacional Los Cardones. We deeply thank the revision and handling by the editor Prof. Jasper Knight, and the suggestions by an anonymous reviewer, which significantly improved a previous version of the manuscript. 
593 |a Universidad de Buenos Aires and INGEIS (CONICET – UBA), Ciudad Universitaria, Intendente Güiraldes s/n, Buenos Aires, 1428, Argentina 
593 |a IUCA-Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 500009, Spain 
593 |a CICTERRA, CONICET-Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1699, Córdoba, X5016GCB, Argentina 
593 |a Earth and Environmental Systems Institute, The Pennsylvania State UniversityPA 16802, United States 
690 1 0 |a CLAY MINERALS 
690 1 0 |a CONTINENTAL BASINS 
690 1 0 |a KAOLINITE 
690 1 0 |a PALEOCLIMATE RECONSTRUCTION 
690 1 0 |a PALEOSOLS 
690 1 0 |a CLAY MINERALS 
690 1 0 |a SCANNING ELECTRON MICROSCOPY 
690 1 0 |a SOILS 
690 1 0 |a WEATHERING 
690 1 0 |a X RAY DIFFRACTION 
690 1 0 |a CHEMICAL WEATHERING 
690 1 0 |a CLAY MINERAL ASSEMBLAGES 
690 1 0 |a CONTINENTAL BASINS 
690 1 0 |a CYCLIC CLIMATIC CHANGES 
690 1 0 |a NORTHERN HEMISPHERES 
690 1 0 |a PALEOCLIMATE RECONSTRUCTION 
690 1 0 |a PALEOSOLS 
690 1 0 |a SOUTHERN HEMISPHERE 
690 1 0 |a KAOLINITE 
690 1 0 |a CLAY MINERAL 
690 1 0 |a CLIMATE VARIATION 
690 1 0 |a KAOLINITE 
690 1 0 |a MINERALOGY 
690 1 0 |a PALEOCENE-EOCENE BOUNDARY 
690 1 0 |a PALEOCLIMATE 
690 1 0 |a PALEOSOL 
690 1 0 |a RECONSTRUCTION 
690 1 0 |a SCANNING ELECTRON MICROSCOPY 
690 1 0 |a X-RAY DIFFRACTION 
651 4 |a ARGENTINA 
700 1 |a Bauluz, B. 
700 1 |a del Papa, C. 
700 1 |a White, T. 
700 1 |a Yuste, A. 
700 1 |a Mayayo, M.J. 
773 0 |d Elsevier B.V., 2018  |g v. 368  |h pp. 44-57  |p Sediment. Geol.  |x 00370738  |w (AR-BaUEN)CENRE-87  |t Sedimentary Geology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044149445&doi=10.1016%2fj.sedgeo.2018.03.007&partnerID=40&md5=b313527ba72b70b4806b8855083ecbaa  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.sedgeo.2018.03.007  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00370738_v368_n_p44_DoCampo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00370738_v368_n_p44_DoCampo  |y Registro en la Biblioteca Digital 
961 |a paper_00370738_v368_n_p44_DoCampo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 86152