Proteasome stress leads to APP axonal transport defects by promoting its amyloidogenic processing in lysosomes

Alzheimer disease (AD) pathology includes the accumulation of poly-ubiquitylated (also known as poly-ubiquitinated) proteins and failures in proteasome-dependent degradation. Whereas the distribution of proteasomes and its role in synaptic function have been studied, whether proteasome activity regu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Otero, M.G
Otros Autores: Bessone, I.F, Hallberg, A.E, Cromberg, L.E, De Rossi, M.C, Saez, T.M, Levi, V., Almenar-Queralt, A., Falzone, T.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Company of Biologists Ltd 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 25145caa a22019457a 4500
001 PAPER-25195
003 AR-BaUEN
005 20230518205712.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85048343214 
024 7 |2 cas  |a proteasome, 140879-24-9 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JNCSA 
100 1 |a Otero, M.G. 
245 1 0 |a Proteasome stress leads to APP axonal transport defects by promoting its amyloidogenic processing in lysosomes 
260 |b Company of Biologists Ltd  |c 2018 
270 1 0 |m Falzone, T.L.; Instituto de Biologiá Celular y Neurociencias IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Argentina; email: tfalzone@fmed.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Agholme, L., Hallbeck, M., Benedikz, E., Marcusson, J., Kågedal, K., Amyloid-β secretion, generation, and lysosomal sequestration in response to proteasome inhibition: involvement of autophagy (2012) J. Alzheimer's Dis, 31, pp. 343-358 
504 |a Agholme, L., Nath, S., Domert, J., Marcusson, J., Kågedal, K., Hallbeck, M., Proteasome inhibition induces stress kinase dependent transport deficits-implications for Alzheimer's disease (2014) Mol. Cell. Neurosci, 58, pp. 29-39 
504 |a Allinquant, B., Hantraye, P., Mailleux, P., Moya, K., Bouillot, C., Prochiantz, A., Downregulation of amyloid precursor protein inhibits neurite outgrowth in vitro (1995) J. Cell Biol, 128, pp. 919-927 
504 |a Almeida, C.G., Takahashi, R.H., Gouras, G.K., β-amyloid accumulation impairs multivesicular body sorting by inhibiting the ubiquitinproteasome system (2006) J. Neurosci, 26, pp. 4277-4288 
504 |a Almenar-Queralt, A., Falzone, T.L., Shen, Z., Lillo, C., Killian, R.L., Arreola, A.S., Niederst, E.D., Briggs, S.P., UV irradiation accelerates amyloid precursor protein (APP) processing and disrupts APP axonal transport (2014) J. Neurosci, 34, pp. 3320-3339 
504 |a Amaratunga, A., Fine, R.E., Generation of amyloidogenic C-terminal fragments during rapid axonal transport in vivo of-amyloid precursor protein in the optic nerve (1995) J. Biol. Chem, 270, pp. 17268-17272 
504 |a Arastu-Kapur, S., Anderl, J.L., Kraus, M., Parlati, F., Shenk, K.D., Lee, S.J., Muchamuel, T., Ball, A.J., Nonproteasomal targets of the proteasome inhibitors bortezomib and carfilzomib: a link to clinical adverse events (2011) Clin. Cancer Res, 17, pp. 2734-2743 
504 |a Bence, N.F., Sampat, R.M., Kopito, R.R., Impairment of the ubiquitinproteasome system by protein aggregation (2001) Science, 292, pp. 1552-1555 
504 |a Bloom, G.S., Amyloid-β and tau: the trigger and bullet in alzheimer disease pathogenesis (2014) JAMA Neurol, 71, pp. 505-508 
504 |a Brojatsch, J., Lima, H., Kar, A.K., Jacobson, L.S., Muehlbauer, S.M., Chandran, K., Diaz-Griffero, F., A proteolytic cascade controls lysosome rupture and necrotic cell death mediated by lysosome-destabilizing adjuvants (2014) PLoS ONE, 9 
504 |a Cai, D., Leem, J.Y., Greenfield, J.P., Wang, P., Kim, B.S., Wang, R., Lopes, K.O., Greengard, P., Presenilin-1 regulates intracellular trafficking and cell surface delivery of β-amyloid precursor protein (2003) J. Biol. Chem, 278, pp. 3446-3454 
504 |a Caporaso, G.L., Takei, K., Gandy, S.E., Matteoli, M., Mundigl, O., Greengard, P., De Camilli, P., Morphologic and biochemical analysis of the intracellular trafficking of the Alzheimer beta/A4 amyloid precursor protein (1994) J. Neurosci, 14, pp. 3122-3138 
504 |a Carey, R.M., Balcz, B.A., Lopez-Coviella, I., Slack, B.E., Inhibition of dynamin-dependent endocytosis increases shedding of the amyloid precursor protein ectodomain and reduces generation of amyloid β protein (2005) BMC Cell Biol, 6, p. 30 
504 |a Cataldo, A.M., Nixon, R.A., Enzymatically active lysosomal proteases are associated with amyloid deposits in Alzheimer brain (1990) Proc. Natl. Acad. Sci. USA, 87, pp. 3861-3865 
504 |a Cataldo, A.M., Thayer, C.Y., Bird, E.D., Wheelock, T.R., Nixon, R.A., Lysosomal proteinase antigens are prominently localized within senile plaques of Alzheimer's disease: evidence for a neuronal origin (1990) Brain Res, 513, pp. 181-192 
504 |a Cecarini, V., Bonfili, L., Cuccioloni, M., Mozzicafreddo, M., Rossi, G., Keller, J.N., Angeletti, M., Eleuteri, A.M., Wild type and mutant amyloid precursor proteins influence downstream effects of proteasome and autophagy inhibition (2014) Biochim. Biophys. Acta, 1842, pp. 127-134 
504 |a Chen, H., Polo, S., Di Fiore, P.P., De Camilli, P.V., Rapid Ca2+-dependent decrease of protein ubiquitination at synapses (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 14908-14913 
504 |a Choy, R.W.-Y., Cheng, Z., Schekman, R., Amyloid precursor protein (APP) traffics from the cell surface via endosomes for amyloid β (Aβ) production in the trans-Golgi network (2012) Proc. Natl Acad. Sci. USA, 109, pp. E2077-E2082 
504 |a Ciechanover, A., Brundin, P., The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg (2003) Neuron, 40, pp. 427-446 
504 |a Das, U., Wang, L., Ganguly, A., Saikia, J.M., Wagner, S.L., Koo, E.H., Roy, S., Visualizing APP and BACE-1 approximation in neurons yields insight into the amyloidogenic pathway (2016) Nat. Neurosci, 19, p. 55 
504 |a Dehvari, N., Mahmud, T., Persson, J., Bengtsson, T., Graff, C., Winblad, B., Rönnbäck, A., Behbahani, H., Amyloid precursor protein accumulates in aggresomes in response to proteasome inhibitor (2012) Neurochem. Int, 60, pp. 533-542 
504 |a Dikic, I., Proteasomal and autophagic degradation systems (2017) Annu. Rev. Biochem, 86, pp. 193-224 
504 |a Djakovic, S.N., Schwarz, L.A., Barylko, B., DeMartino, G.N., Patrick, G.N., Regulation of the proteasome by neuronal activity and calcium/ calmodulin-dependent protein kinase II (2009) J. Biol. Chem, 284, pp. 26655-26665 
504 |a Ebrahimi-Fakhari, D., Cantuti-Castelvetri, I., Fan, Z., Rockenstein, E., Masliah, E., Hyman, B.T., McLean, P.J., Unni, V.K., Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of α-synuclein (2011) J. Neurosci, 31, pp. 14508-14520 
504 |a Falzone, T.L., Stokin, G.B., Imaging amyloid precursor protein in vivo: an axonal transport assay (2012) Methods Mol. Biol, 846, pp. 295-303 
504 |a Falzone, T.L., Stokin, G.B., Lillo, C., Rodrigues, E.M., Westerman, E.L., Williams, D.S., Goldstein, L.S.B., Axonal stress kinase activation and tau misbehavior induced by kinesin-1 transport defects (2009) J. Neurosci, 29, pp. 5758-5767 
504 |a Farizatto, K.L.G., Ikonne, U.S., Almeida, M.F., Ferrari, M.F.R., Bahr, B.A., Aβ(42)-mediated proteasome inhibition and associated tau pathology in hippocampus are governed by a lysosomal response involving cathepsin B: evidence for protective crosstalk between protein clearance pathways (2017) PLoS ONE, 12 
504 |a Fischer, D.F., van Dijk, R., van Tijn, P., Hobo, B., Verhage, M.C., van der Schors, R.C., Wan Li, K., van Leeuwen, F.W., Long-term proteasome dysfunction in the mouse brain by expression of aberrant ubiquitin (2009) Neurobiol. Aging, 30, pp. 847-863 
504 |a Fortun, J., Dunn, W.A., Joy, S., Li, J., Notterpek, L., Emerging role for autophagy in the removal of aggresomes in Schwann cells (2003) J. Neurosci, 23, pp. 10672-10680 
504 |a Frick, M., Schmidt, K., Nichols, B.J., Modulation of lateral diffusion in the plasma membrane by protein density (2007) Curr. Biol, 17, pp. 462-467 
504 |a Geetha T.andWooten, M.W., TrkA receptor endolysosomal degradation is both ubiquitin and proteasome dependent (2008) Traffic, 9, pp. 1146-1156 
504 |a Goldstein, L.S.B., Axonal transport and neurodegenerative disease: can we see the elephant? (2012) Prog. Neurobiol, 99, pp. 186-190 
504 |a Gruenberg, J., Stenmark, H., The biogenesis of multivesicular endosomes (2004) Nat. Rev. Mol. Cell Biol, 5, p. 317 
504 |a Gunawardena, S., Goldstein, L.S.B., Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila (2001) Neuron, 32, pp. 389-401 
504 |a Haass, C., Koo, E.H., Mellon, A., Hung, A.Y., Selkoe, D.J., Targeting of cell-surface [beta]-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments (1992) Nature, 357, pp. 500-503 
504 |a Haass, C., Schlossmacher, M.G., Hung, A.Y., Vigo-Pelfrey, C., Mellon, A., Ostaszewski, B.L., Lieberburg, I., Teplow, D.B., Amyloid [beta]-peptide is produced by cultured cells during normal metabolism (1992) Nature, 359, pp. 322-325 
504 |a Hsu, M.-T., Guo, C.-L., Liou, A.Y., Chang, T.-Y., Ng, M.-C., Florea, B.I., Overkleeft, H.S., Cheng, P.-L., Stagedependent axon transport of proteasomes contributes to axon development (2015) Dev. Cell, 35, pp. 418-431 
504 |a Huse, J.T., Liu, K., Pijak, D.S., Carlin, D., Lee, V.M.-Y., Doms, R.W., β-secretase processing in the trans-Golgi network preferentially generates truncated amyloid species that accumulate in Alzheimer's disease brain (2002) J. Biol. Chem, 277, pp. 16278-16284 
504 |a Ihara, Y., Morishima-Kawashima, M., Nixon, R., The ubiquitin-proteasome system and the autophagic-lysosomal system in Alzheimer disease (2012) Cold Spring Harb. Perspect. Med, 2 
504 |a Jones, S.M., Howell, K.E., Phosphatidylinositol 3-kinase is required for the formation of constitutive transport vesicles from the TGN (1997) J. Cell Biol, 139, pp. 339-349 
504 |a Joshi, G., Wang, Y., Golgi defects enhance APP amyloidogenic processing in Alzheimer's disease (2015) BioEssays, 37, pp. 240-247 
504 |a Joshi, G., Chi, Y., Huang Z.andWang, Y., Aβ-induced Golgi fragmentation in Alzheimer's disease enhances Aβ production (2014) Proc. Natl Acad. Sci. USA, 111, pp. E1230-E1239 
504 |a Kaether, C., Skehel, P., Dotti, C.G., Axonal membrane proteins are transported in distinct carriers: a two-color video microscopy study in cultured hippocampal neurons (2000) Mol. Biol. Cell, 11, pp. 1213-1224 
504 |a Kamal, A., Almenar-Queralt, A., LeBlanc, J.F., Roberts, E.A., Goldstein, L.S.B., Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP (2001) Nature, 414, pp. 643-648 
504 |a Katzmann, D.J., Odorizzi, G., Emr, S.D., Receptor downregulation and multivesicular-body sorting (2002) Nat. Rev. Mol. Cell Biol, 3, p. 893 
504 |a Keck, S., Nitsch, R., Grune, T., Ullrich, O., Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer's disease (2003) J. Neurochem, 85, pp. 115-122 
504 |a Keller, J.N., Hanni, K.B., Markesbery, W.R., Impaired proteasome function in Alzheimer's disease (2000) J. Neurochem, 75, pp. 436-439 
504 |a Kienlen-Campard, P., Feyt, C., Huysseune, S., de Diesbach, P., N'Kuli, F., Courtoy, P.J., Octave, J.-N., Lactacystin decreases amyloid-beta peptide production by inhibiting beta-secretase activity (2006) J. Neurosci. Res, 84, pp. 1311-1322 
504 |a Koo, E.H., Sisodia, S.S., Archer, D.R., Martin, L.J., Weidemann, A., Beyreuther, K., Fischer, P., Price, D.L., Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport (1990) Proc. Natl. Acad. Sci. USA, 87, pp. 1561-1565 
504 |a Korolchuk, V.I., Mansilla, A., Menzies, F.M., Rubinsztein, D.C., Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates (2009) Mol. Cell, 33, pp. 517-527 
504 |a Kumar, P., Ambasta, R.K., Veereshwarayya, V., Rosen, K.M., Kosik, K.S., Band, H., Mestril, R., Querfurth, H.W., CHIP and HSPs interact with β-APP in a proteasome-dependent manner and influence Aβ metabolism (2007) Hum. Mol. Genet, 16, pp. 848-864 
504 |a Lam, Y.A., Pickart, C.M., Alban, A., Landon, M., Jamieson, C., Ramage, R., Mayer, R.J., Layfield, R., Inhibition of the ubiquitin-proteasome system in Alzheimer's disease (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 9902-9906 
504 |a Leyssen, M., Ayaz, D., Hébert, S.S., Reeve, S., De Strooper, B., Hassan, B.A., Amyloid precursor protein promotes post-developmental neurite arborization in the Drosophila brain (2005) EMBO J, 24, pp. 2944-2955 
504 |a Liu, Y., Hettinger, C.L., Zhang, D., Rezvani, K., Wang, X., Wang, H., The proteasome function reporter GFPu accumulates in young brains of the APPswe/PS1dE9 Alzheimer's disease mouse model (2014) Cell. Mol. Neurobiol, 34, pp. 315-322 
504 |a Macia, E., Ehrlich, M., Massol, R., Boucrot, E., Brunner, C., Kirchhausen, T., Dynasore, a cell-permeable inhibitor of dynamin (2006) Dev. Cell, 10, pp. 839-850 
504 |a Melikova, M.S., Kondratov, K.A., Kornilova, E.S., Two different stages of epidermal growth factor (EGF) receptor endocytosis are sensitive to free ubiquitin depletion produced by proteasome inhibitor MG132 (2006) Cell Biol. Int, 30, pp. 31-43 
504 |a Moises, T., Wüller, S., Saxena, S., Senderek, J., Weis, J., Krüttgen, A., Proteasomal inhibition alters the trafficking of the neurotrophin receptor TrkA (2009) Biochem. Biophys. Res. Commun, 387, pp. 360-364 
504 |a Muresan, V., Varvel, N.H., Lamb, B.T., Muresan, Z., The cleavage products of amyloid-beta precursor protein are sorted to distinct carrier vesicles that are independently transported within neurites (2009) J. Neurosci, 29, pp. 3565-3578 
504 |a Niederst, E.D., Reyna, S.M., Goldstein, L.S.B., Axonal amyloid precursor protein and its fragments undergo somatodendritic endocytosis and processing (2015) Mol. Biol. Cell, 26, pp. 205-217 
504 |a Nunan, J., Shearman, M.S., Checler, F., Cappai, R., Evin, G., Beyreuther, K., Masters, C.L., Small, D.H., The C-terminal fragment of the Alzheimer's disease amyloid protein precursor is degraded by a proteasomedependent mechanism distinct from gamma-secretase (2001) Eur. J. Biochem, 268, pp. 5329-5336 
504 |a Otero, M.G., Alloatti, M., Cromberg, L.E., Almenar-Queralt, A., Encalada, S.E., Pozo Devoto, V.M., Bruno, L., Falzone, T.L., Fast axonal transport of the proteasome complex depends on membrane interaction and molecular motor function (2014) J. Cell Sci, 127, pp. 1537-1549 
504 |a Pandey, U.B., Batlevi, Y., Baehrecke, E.H., Taylor, J.P., HDAC6 at the intersection of autophagy, the ubiquitin-proteasome system and neurodegeneration (2007) Autophagy, 3, pp. 643-645 
504 |a Patrick, G.N., Bingol, B., Weld, H.A., Schuman, E.M., Ubiquitinmediated proteasome activity is required for agonist-induced endocytosis of GluRs (2003) Curr. Biol, 13, pp. 2073-2081 
504 |a Pigino, G., Morfini, G., Pelsman, A., Mattson, M.P., Brady, S.T., Busciglio, J., Alzheimer's presenilin 1 mutations impair kinesin-based axonal transport (2003) J. Neurosci, 23, pp. 4499-4508 
504 |a Querfurth, H.W., LaFerla, F.M., Alzheimer's disease (2010) N. Engl. J. Med, 362, pp. 329-344 
504 |a Ries, J., Schwille, P., Fluorescence correlation spectroscopy (2012) BioEssays, 34, pp. 361-368 
504 |a Rodrigues, E.M., Weissmiller, A.M., Goldstein, L.S.B., Enhanced beta-secretase processing alters APP axonal transport and leads to axonal defects (2012) Hum. Mol. Genet, 21, pp. 4587-4601 
504 |a Salehi, A., Delcroix, J.-D., Belichenko, P.V., Zhan, K., Wu, C., Valletta, J.S., Takimoto-Kimura, R., Chung, P.P., Increased App expression in a mouse model of Down's syndrome disrupts NGF transport and causes cholinergic neuron degeneration (2006) Neuron, 51, pp. 29-42 
504 |a Selkoe, D.J., The molecular pathology of Alzheimer's disease (1991) Neuron, 6, pp. 487-498 
504 |a Sisodia, S., Koo, E., Beyreuther, K., Unterbeck, A., Price, D., Evidence that beta-amyloid protein in Alzheimer's disease is not derived by normal processing (1990) Science, 248, pp. 492-495 
504 |a Smith, D.H., Chen, X., Iwata, A., Graham, D.I., Amyloid β accumulation in axons after traumatic brain injury in humans (2003) J. Neurosurg, 98, pp. 1072-1077 
504 |a Soba, P., Eggert, S., Wagner, K., Zentgraf, H., Siehl, K., Kreger, S., Löwer, A., Paro, R., Homo-and heterodimerization of APP family members promotes intercellular adhesion (2005) EMBO J, 24, pp. 3624-3634 
504 |a Soldano, A., Okray, Z., Janovska, P., Tmejová, K., Reynaud, E., Claeys, A., Yan, J., Dura, J.-M., The Drosophila homologue of the amyloid precursor protein is a conserved modulator of Wnt PCP signaling (2013) PLoS Biol, 11 
504 |a Steuble, M., Diep, T.-M., Schätzle, P., Ludwig, A., Tagaya, M., Kunz, B., Sonderegger, P., Calsyntenin-1 shelters APP from proteolytic processing during anterograde axonal transport (2012) Biol. Open, 1, pp. 761-774 
504 |a Stieber, A., Mourelatos, Z., Gonatas, N.K., In Alzheimer's disease the Golgi apparatus of a population of neurons without neurofibrillary tangles is fragmented and atrophic (1996) Am. J. Pathol, 148, pp. 415-426 
504 |a Stokin, G.B., Goldstein, L.S.B., Axonal transport and Alzheimer's disease (2006) Annu. Rev. Biochem, 75, pp. 607-627 
504 |a Stokin, G.B., Lillo, C., Falzone, T.L., Brusch, R.G., Rockenstein, E., Mount, S.L., Raman, R., Williams, D.S., Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease (2005) Science, 307, pp. 1282-1288 
504 |a Szodorai, A., Kuan, Y.-H., Hunzelmann, S., Engel, U., Sakane, A., Sasaki, T., Takai, Y., Beyreuther, K., APP anterograde transport requires Rab3A GTPase activity for assembly of the transport vesicle (2009) J. Neurosci, 29, pp. 14534-14544 
504 |a Tokuda, T., Kametani, F., Tanaka, K., Sahara, N., Ikeda, S., Yanagisawa, N., Amyloid β protein and its 3-kDa fragment are present in the axoplasm fraction of the white matter in human brain (1996) Biochem. Biophys. Res. Commun, 223, pp. 165-169 
504 |a Torroja, L., Packard, M., Gorczyca, M., White, K., Budnik, V., The Drosophila β-amyloid precursor protein homolog promotes synapse differentiation at the neuromuscular junction (1999) J. Neurosci, 19, pp. 7793-7803 
504 |a Traub, L.M., Kornfeld, S., The trans-Golgi network: a late secretory sorting station (1997) Curr. Opin. Cell Biol, 9, pp. 527-533 
504 |a Trojanowski, J.Q., Lee, V.M.Y., Fatal attractions. of proteins: a comprehensive hypothetical mechanism underlying Alzheimer's disease and other neurodegenerative disorders (2000) Ann. N. Y. Acad. Sci, 924, pp. 62-67 
504 |a van Leeuwen, F.W., de Kleijn, D.P.V., van den Hurk, H.H., Neubauer, A., Sonnemans, M.A.F., Sluijs, J.A., Köycü, S., Martens, G.J., Frameshift mutants of beta amyloid precursor protein and ubiquitin-B in Alzheimer's and Down patients (1998) Science, 279, pp. 242-247 
504 |a Vonderheit, A., Helenius, A., Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes (2005) PLoS Biol, 3, p. e233 
504 |a Wang, Z., Wang, B., Yang, L., Guo, Q., Aithmitti, N., Songyang, Z., Zheng, H., Presynaptic and postsynaptic interaction of the amyloid precursor protein promotes peripheral and central synaptogenesis (2009) J. Neurosci, 29, pp. 10788-10801 
504 |a Wang, B., Li, H., Mutlu, S.A., Bowser, D.A., Moore, M.J., Wang, M.C., Zheng, H., The amyloid precursor protein is a conserved receptor for slit to mediate axon guidance (2017) eNeuro, 4 
504 |a Webb, J.L., Ravikumar, B., Atkins, J., Skepper, J.N., Rubinsztein, D.C., Alpha-Synuclein is degraded by both autophagy and the proteasome (2003) J Biol Chem, 278, pp. 25009-25013 
504 |a Willeumier, K., Pulst, S.M., Schweizer, F.E., Proteasome inhibition triggers activity-dependent increase in the size of the recycling vesicle pool in cultured hippocampal neurons (2006) J. Neurosci, 26, pp. 11333-11341 
520 3 |a Alzheimer disease (AD) pathology includes the accumulation of poly-ubiquitylated (also known as poly-ubiquitinated) proteins and failures in proteasome-dependent degradation. Whereas the distribution of proteasomes and its role in synaptic function have been studied, whether proteasome activity regulates the axonal transport and metabolism of the amyloid precursor protein (APP), remains elusive. By using live imaging in primary hippocampal neurons, we showed that proteasome inhibition rapidly and severely impairs the axonal transport of APP. Fluorescence cross-correlation analyses andmembrane internalization blockage experiments showed that plasma membrane APP does not contribute to transport defects. Moreover, by western blotting and double-color APP imaging, we demonstrated that proteasome inhibition precludes APP axonal transport by enhancing its endo-lysosomal delivery, where β- cleavage is induced. Taken together, we found that proteasomes control the distal transport of APP and can re-distribute Golgi-derived vesicles to the endo-lysosomal pathway. This crosstalk between proteasomes and lysosomes regulates the intracellular APP dynamics, and defects in proteasome activity can be considered a contributing factor that leads to abnormal APP metabolism in AD. © 2018. Published by The Company of Biologists Ltd.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: U.S. Department of Defense, AZ140064 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACyT 2011/2014 
536 |a Detalles de la financiación: Ministerio de Ciencia, Tecnología e Innovación Productiva, PICT 2013-0402 
536 |a Detalles de la financiación: Ministerio de Ciencia, Tecnología e Innovación Productiva 
536 |a Detalles de la financiación: NIRG10-172840 
536 |a Detalles de la financiación: This work was supported by grants from the Ministerio de Ciencia, Tecnologıá e Innovación Productiva (MINCyT) (PICT 2013-0402, T.L.F.); the Alzheimer’s Association (NIRG10-172840, T.L.F.); the Universidad de Buenos Aires (UBACyT 2011/2014, T.L.F.); and the U.S. Department of Defense (AZ140064, A.A.-Q.). M.G.O., T.M.S. and L.E.C. acknowledge support from Consejo Nacional de Investigaciones Cientıf́ icas y Técnicas (CONICET) fellowships. 
593 |a Instituto de Biologiá Celular y Neurociencias IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires, CP1121, Argentina 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Quimíca Biológica-IQUIBICEN UBA-CONICET, Buenos Aires, CP1428EGA, Argentina 
593 |a Instituto de Biología y Medicina Experimental, IBYME (CONICET), Vuelta de obligado 2490, Buenos Aires, CP 1428, Argentina 
593 |a Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States 
690 1 0 |a ALZHEIMER DISEASE 
690 1 0 |a AMYLOID PRECURSOR PROTEIN 
690 1 0 |a AXONAL TRANSPORT 
690 1 0 |a LYSOSOME 
690 1 0 |a PROTEASOME 
690 1 0 |a AMYLOID PRECURSOR PROTEIN 
690 1 0 |a PROTEASOME 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ANIMAL TISSUE 
690 1 0 |a ARTICLE 
690 1 0 |a CELL MEMBRANE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a FLUORESCENCE ANALYSIS 
690 1 0 |a GOLGI COMPLEX 
690 1 0 |a HIPPOCAMPUS 
690 1 0 |a LIVE CELL IMAGING 
690 1 0 |a LYSOSOME 
690 1 0 |a MOLECULAR INTERACTION 
690 1 0 |a MOUSE 
690 1 0 |a NERVE CELL 
690 1 0 |a NERVE FIBER TRANSPORT 
690 1 0 |a NEWBORN 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN AGGREGATION 
690 1 0 |a PROTEIN DEGRADATION 
690 1 0 |a PROTEIN LOCALIZATION 
690 1 0 |a PROTEIN METABOLISM 
690 1 0 |a PROTEIN PROCESSING 
690 1 0 |a PROTEIN TRANSPORT 
690 1 0 |a WESTERN BLOTTING 
700 1 |a Bessone, I.F. 
700 1 |a Hallberg, A.E. 
700 1 |a Cromberg, L.E. 
700 1 |a De Rossi, M.C. 
700 1 |a Saez, T.M. 
700 1 |a Levi, V. 
700 1 |a Almenar-Queralt, A. 
700 1 |a Falzone, T.L. 
773 0 |d Company of Biologists Ltd, 2018  |g v. 131  |k n. 11  |p J. Cell Sci.  |x 00219533  |w (AR-BaUEN)CENRE-769  |t Journal of Cell Science 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048343214&doi=10.1242%2fjcs214536&partnerID=40&md5=dd1414a6bf168a5a99964c6245a26232  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1242/jcs214536  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00219533_v131_n11_p_Otero  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219533_v131_n11_p_Otero  |y Registro en la Biblioteca Digital 
961 |a paper_00219533_v131_n11_p_Otero  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86148