Mechanism of Sulfide Binding by Ferric Hemeproteins
The reaction of hydrogen sulfide (H2S) with hemeproteins is a key physiological reaction; still, its mechanism and implications are not completely understood. In this work, we propose a combination of experimental and theoretical tools to shed light on the reaction in model system microperoxidase 11...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
American Chemical Society
2018
|
| Materias: | |
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| Sumario: | The reaction of hydrogen sulfide (H2S) with hemeproteins is a key physiological reaction; still, its mechanism and implications are not completely understood. In this work, we propose a combination of experimental and theoretical tools to shed light on the reaction in model system microperoxidase 11 (MP11-FeIII) and myoglobin (Mb-FeIII), from the estimation of the intrinsic binding constants of the species H2S and hydrosulfide (HS-), and the computational description of the overall binding process. Our results show that H2S and HS- are the main reactive species in Mb-FeIII and MP11-FeIII, respectively, and that the magnitude of their intrinsic binding constants are similar to most of the binding constants reported so far for hemeproteins systems and model compounds. However, while the binding of HS- to Mb-FeIII was negligible, the binding of H2S to MP11-FeIII was significant, providing a frame for a discriminated analysis of both species and revealing differential mechanistic aspects. A joint inspection of the kinetic data and the free energy profiles of the binding processes suggests that a dissociative mechanism with the release of a coordinated water molecule as rate limiting step is operative in the binding of H2S to Mb-FeIII and that the binding of HS- is prevented in the access to the protein matrix. For the MP11-FeIII case, where no access restrictions for the ligands are present, an associative component in the mechanism seems to be operative. Overall, the results suggest that if accessing the active site then both H2S and HS- are capable of binding a ferric heme moiety. Copyright © 2018 American Chemical Society. |
|---|---|
| Bibliografía: | Pavlik, J.W., Noll, B.C., Oliver, A.G., Schulz, C.E., Scheidt, W.R., Hydrosulfide (HS -) Coordination in Iron Porphyrinates (2010) Inorg. Chem., 49 (3), pp. 1017-1026 Kraus, D.W., Wittenberg, J.B., Hemoglobins of the Lucina Pectinata/Bacteria Symbiosis. I. Molecular Properties, Kinetics and Equilibria of Reactions with Ligands (1990) J. Biol. Chem., 265 (27), pp. 16043-16053 Wang, D., Liu, L., Wang, H., Xu, H., Chen, L., Ma, L., Li, Z., Clues for Discovering a New Biological Function of Vitreoscilla Hemoglobin in Organisms: Potential Sulfide Receptor and Storage (2016) FEBS Lett., 590 (8), pp. 1132-1142 Vitvitsky, V., Yadav, P.K., Kurthen, A., Banerjee, R., Sulfide Oxidation by a Noncanonical Pathway in Red Blood Cells Generates Thiosulfate and Polysulfides (2015) J. Biol. Chem., 290 (13), pp. 8310-8320 Bostelaar, T., Vitvitsky, V., Kumutima, J., Lewis, B.E., Yadav, P.K., Brunold, T.C., Filipovic, M., Banerjee, R., Hydrogen Sulfide Oxidation by Myoglobin (2016) J. Am. Chem. Soc., 138 (27), pp. 8476-8488 Boechi, L., Arrar, M., Martí, M.A., Olson, J.S., Roitberg, A.E., Estrin, D.A., Hydrophobic Effect Drives Oxygen Uptake in Myoglobin via Histidine E7 (2013) J. Biol. Chem., 288 (9), pp. 6754-6762 Pietri, R., Lewis, A., León, R.G., Casabona, G., Kiger, L., Yeh, S.-R., Fernandez-Alberti, S., López-Garriga, J., Factors Controlling the Reactivity of Hydrogen Sulfide with Hemeproteins (2009) Biochemistry, 48 (22), pp. 4881-4894 Pietri, R., León, R.G., Kiger, L., Marden, M.C., Granell, L.B., Cadilla, C.L., López-Garriga, J., Hemoglobin i from Lucina Pectinata: A Model for Distal Heme-Ligand Control (2006) Biochim. Biophys. Acta, Proteins Proteomics, 1764 (4), pp. 758-765 Boubeta, F.M., Bari, S.E., Estrin, D.A., Boechi, L., Access and Binding of H 2 S to Hemeproteins: The Case of HbI of Lucina Pectinata (2016) J. Phys. Chem. B, 120 (36), pp. 9642-9653 Bieza, S.A., Boubeta, F., Feis, A., Smulevich, G., Estrin, D.A., Boechi, L., Bari, S.E., Reactivity of Inorganic Sulfide Species toward a Heme Protein Model (2015) Inorg. Chem., 54 (2), pp. 527-533 Watanabe, K., Suzuki, T., Kitagishi, H., Kano, K., Reaction between a Haemoglobin Model Compound and Hydrosulphide in Aqueous Solution (2015) Chem. Commun., 51 (19), pp. 4059-4061 Zhao, Z., Wang, D., Wang, M., Sun, X., Wang, L., Huang, X., Ma, L., Li, Z., Proximal Environment Controlling the Reactivity between Inorganic Sulfide and Heme-Peptide Model (2016) RSC Adv., 6 (82), pp. 78858-78864 Milani, M., Mycobacterium Tuberculosis Hemoglobin N Displays a Protein Tunnel Suited for O2 Diffusion to the Heme (2001) EMBO J., 20 (15), pp. 3902-3909 Elber, R., Ligand Diffusion in Globins: Simulations versus Experiment (2010) Curr. Opin. Struct. Biol., 20 (2), pp. 162-167 Perutz, M.F., Mathews, F.S., An X-Ray Study of Azide Methaemoglobin (1966) J. Mol. Biol., 21 (1), pp. 199-202 Scott, E.E., Gibson, Q.H., Olson, J.S., Mapping the Pathways for O 2 Entry into and Exit from Myoglobin (2001) J. Biol. Chem., 276 (7), pp. 5177-5188 Brunori, M., Structural Dynamics of Myoglobin (2000) Biophys. Chem., 86 (23), pp. 221-230 Brunori, M., Vallone, B., Cutruzzola, F., Travaglini-Allocatelli, C., Berendzen, J., Chu, K., Sweet, R.M., Schlichting, I., The Role of Cavities in Protein Dynamics: Crystal Structure of a Photolytic Intermediate of a Mutant Myoglobin (2000) Proc. Natl. Acad. Sci. U. S. A., 97 (5), pp. 2058-2063 Milani, M., Pesce, A., Ouellet, Y., Dewilde, S., Friedman, J., Ascenzi, P., Guertin, M., Bolognesi, M., Heme-Ligand Tunneling in Group i Truncated Hemoglobins (2004) J. Biol. Chem., 279 (20), pp. 21520-21525 Mishra, S., Meuwly, M., Nitric Oxide Dynamics in Truncated Hemoglobin: Docking Sites, Migration Pathways, and Vibrational Spectroscopy from Molecular Dynamics Simulations (2009) Biophys. J., 96 (6), pp. 2105-2118 Ouellet, Y.H., Daigle, R., Lagüe, P., Dantsker, D., Milani, M., Bolognesi, M., Friedman, J.M., Guertin, M., Ligand Binding to Truncated Hemoglobin N from Mycobacterium Tuberculosis Is Strongly Modulated by the Interplay between the Distal Heme Pocket Residues and Internal Water (2008) J. Biol. Chem., 283 (40), pp. 27270-27278 Goldbeck, R.A., Bhaskaran, S., Ortega, C., Mendoza, J.L., Olson, J.S., Soman, J., Kliger, D.S., Esquerra, R.M., Water and Ligand Entry in Myoglobin: Assessing the Speed and Extent of Heme Pocket Hydration after CO Photodissociation (2006) Proc. Natl. Acad. Sci. U. S. A., 103 (5), pp. 1254-1259 Olson, J.S., Phillips, G.N., Myoglobin Discriminates between O2, NO, and CO by Electrostatic Interactions with the Bound Ligand (1997) JBIC, J. Biol. Inorg. Chem., 2 (4), pp. 544-552 Bustamante, J.P., Abbruzzetti, S., Marcelli, A., Gauto, D., Boechi, L., Bonamore, A., Boffi, A., Foggi, P., Ligand Uptake Modulation by Internal Water Molecules and Hydrophobic Cavities in Hemoglobins (2014) J. Phys. Chem. B, 118 (5), pp. 1234-1245 Bustamante, J.P., Szretter, M.E., Sued, M., Martí, M.A., Estrin, D.A., Boechi, L., A Quantitative Model for Oxygen Uptake and Release in a Family of Hemeproteins (2016) Bioinformatics, 32 (12), pp. 1805-1813 Cerda, J., Echevarria, Y., Morales, E., López-Garriga, J., Resonance Raman Studies of the Heme-Ligand Active Site of Hemoglobin i FromLucina Pectinata (1999) Biospectroscopy, 5 (5), pp. 289-301 Nicoletti, F.P., Comandini, A., Bonamore, A., Boechi, L., Boubeta, F.M., Feis, A., Smulevich, G., Boffi, A., Sulfide Binding Properties of Truncated Hemoglobins (2010) Biochemistry, 49 (10), pp. 2269-2278 Ascenzi, P., Sbardella, D., Santucci, R., Coletta, M., Cyanide Binding to Ferrous and Ferric Microperoxidase-11 (2016) JBIC, J. Biol. Inorg. Chem., 21 (4), pp. 511-522 Dou, Y., Olson, J.S., Wilkinson, A.J., Ikeda-Saito, M., Mechanism of Hydrogen Cyanide Binding to Myoglobin (1996) Biochemistry, 35 (22), pp. 7107-7113 Pálinkás, Z., Furtmüller, P.G., Nagy, A., Jakopitsch, C., Pirker, K.F., Magierowski, M., Jasnos, K., Nagy, P., Interactions of Hydrogen Sulfide with Myeloperoxidase: Sulfide Is a Substrate and Inhibitor of Myeloperoxidase (2015) Br. J. Pharmacol., 172 (6), pp. 1516-1532 Hartle, M.D., Prell, J.S., Pluth, M.D., Spectroscopic Investigations into the Binding of Hydrogen Sulfide to Synthetic Picket-Fence Porphyrins (2016) Dalton Trans., 45 (11), pp. 4843-4853 Jensen, B., Fago, A., Reactions of Ferric Hemoglobin and Myoglobin with Hydrogen Sulfide under Physiological Conditions (2018) J. Inorg. Biochem., 182, pp. 133-140 Mot, A.C., Bischin, C., Damian, G., Attia, A.A.A., Gal, E., Dina, N., Leopold, N., Silaghi-Dumitrescu, R., Fe(III) - Sulfide Interaction in Globins: Characterization and Quest for a Putative Fe(IV)-Sulfide Species (2018) J. Inorg. Biochem., 179, pp. 32-39 Marques, H.M., Insights into Porphyrin Chemistry Provided by the Microperoxidases, the Haempeptides Derived from Cytochrome C (2007) Dalton Trans., (39), p. 4371 Carraway, A.D., Povlock, S.L., Houston, M.L., Johnston, D.S., Peterson, J., Monomeric Ferric Heme Peptide Derivatives: Model Systems for Hemoproteins (1995) J. Inorg. Biochem., 60 (4), pp. 267-276 Marques, H., Perry, C., Hemepeptide Models for Hemoproteins: The Behavior of -Acetylmicroperoxidase-11 in Aqueous Solution (1999) J. Inorg. Biochem., 75 (4), pp. 281-291 (2016) Mathematica, , version 10.4; Wolfram Research Inc: Champaign, IL Case, D.A., Babin, V., Berryman, J.T., Betz, R.M., Cai, Q., Cerutti, D.S., Cheatham, E.T., III, Gohlke, H., (2014) AMBER 14, , University of California: San Francisco, CA Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J.L., Dror, R.O., Shaw, D.E., Improved Side-Chain Torsion Potentials for the Amber Ff99SB Protein Force Field (2010) Proteins: Struct., Funct., Genet., pp. 1950-1958 Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Pople, J.A., (2004) Gaussian 03, , revision C.02; Gaussian, Inc. Wallingford, CT Soldatova, A.V., Ibrahim, M., Olson, J.S., Czernuszewicz, R.S., Spiro, T.G., New Light on NO Bonding in Fe(III) Heme Proteins from Resonance Raman Spectroscopy and DFT Modeling (2010) J. Am. Chem. Soc., 132 (13), pp. 4614-4625 Marti, M.A., Crespo, A., Capece, L., Boechi, L., Bikiel, D.E., Scherlis, D.A., Estrin, D.A., Dioxygen Affinity in Heme Proteins Investigated by Computer Simulation (2006) J. Inorg. Biochem., 100 (4), pp. 761-770 Capece, L., Marti, M.A., Crespo, A., Doctorovich, F., Estrin, D.A., Heme Protein Oxygen Affinity Regulation Exerted by Proximal Effects (2006) J. Am. Chem. Soc., 128 (38), pp. 12455-12461 Marti, M.A., Capece, L., Bidon-Chanal, A., Crespo, A., Guallar, V., Luque, F.J., Estrin, D.A., Nitric Oxide Reactivity with Globins as Investigated Through Computer Simulation (2008) Methods Enzymol., 437, pp. 477-498 Martí, M.A., Capece, L., Bikiel, D.E., Falcone, B., Estrin, D.A., Oxygen Affinity Controlled by Dynamical Distal Conformations: The Soybean Leghemoglobin and the Paramecium Caudatum Hemoglobin Cases (2007) Proteins: Struct., Funct., Genet., 68 (2), pp. 480-487 Perdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett., 77 (18), pp. 3865-3868 Nadra, A.D., Martí, M.A., Pesce, A., Bolognesi, M., Estrin, D.A., Exploring the Molecular Basis of Heme Coordination in Human Neuroglobin (2008) Proteins: Struct., Funct., Genet., 71 (2), pp. 695-705 Howes, B.D., Giordano, D., Boechi, L., Russo, R., Mucciacciaro, S., Ciaccio, C., Sinibaldi, F., Estrin, D.A., The Peculiar Heme Pocket of the 2/2 Hemoglobin of Cold-Adapted Pseudoalteromonas Haloplanktis TAC125 (2011) JBIC, J. Biol. Inorg. Chem., 16 (2), pp. 299-311 Capece, L., Lewis-Ballester, A., Yeh, S.-R., Estrin, D.A., Marti, M.A., Complete Reaction Mechanism of Indoleamine 2,3-Dioxygenase as Revealed by QM/MM Simulations (2012) J. Phys. Chem. B, 116 (4), pp. 1401-1413 Arroyo Manez, P., Lu, C., Boechi, L., Martí, M.A., Shepherd, M., Wilson, J.L., Poole, R.K., Estrin, D.A., Role of the Distal Hydrogen-Bonding Network in Regulating Oxygen Affinity in the Truncated Hemoglobin III from Campylobacter Jejuni (2011) Biochemistry, 50 (19), pp. 3946-3956 Bidon-Chanal, A., Martí, M.A., Crespo, A., Milani, M., Orozco, M., Bolognesi, M., Luque, F.J., Estrin, D.A., Ligand-Induced Dynamical Regulation of NO Conversion in Mycobacterium Tuberculosis Truncated Hemoglobin-N (2006) Proteins: Struct., Funct., Genet., 64 (2), pp. 457-464 Oliveira, A., Singh, S., Bidon-Chanal, A., Forti, F., Martí, M.A., Boechi, L., Estrin, D.A., Luque, F.J., Role of PheE15 Gate in Ligand Entry and Nitric Oxide Detoxification Function of Mycobacterium Tuberculosis Truncated Hemoglobin N (2012) PLoS One, 7 (11), p. e49291 Boechi, L., Martí, M.A., Milani, M., Bolognesi, M., Luque, F.J., Estrin, D.A., Structural Determinants of Ligand Migration in Mycobacterium Tuberculosis Truncated Hemoglobin O (2008) Proteins: Struct., Funct., Genet., 73 (2), pp. 372-379 Chai, J.-D., Head-Gordon, M., Long-Range Corrected Hybrid Density Functionals with Damped Atom-atom Dispersion Corrections (2008) Phys. Chem. Chem. Phys., 10 (44), p. 6615 Sun, W., Nešić, S., Young, D., Woollam, R.C., Equilibrium Expressions Related to the Solubility of the Sour Corrosion Product Mackinawite (2008) Ind. Eng. Chem. Res., 47 (5), pp. 1738-1742 Li, Q., Lancaster, J.R., Chemical Foundations of Hydrogen Sulfide Biology (2013) Nitric Oxide, 35, pp. 21-34 Traylor, T.G., Deardurff, L.A., Coletta, M., Ascenzi, P., Antonini, E., Brunori, M., Reactivity of Ferrous Heme Proteins at Low pH (1983) J. Biol. Chem., 258 (20), pp. 12147-12148 Giggenbach, W., Optical Spectra and Equilibrium Distribution of Polysulfide Ions in Aqueous Solution at 20.Deg (1972) Inorg. Chem., 11 (6), pp. 1201-1207 Nagy, P., Mechanistic Chemical Perspective of Hydrogen Sulfide Signaling (2015) Methods Enzymol., 554, pp. 3-29 Nagy, P., Pálinkás, Z., Nagy, A., Budai, B., Tóth, I., Vasas, A., Chemical Aspects of Hydrogen Sulfide Measurements in Physiological Samples (2014) Biochim. Biophys. Acta, Gen. Subj., 1840 (2), pp. 876-891 Galardon, E., Huguet, F., Herrero, C., Ricoux, R., Artaud, I., Padovani, D., Reactions of Persulfides with the Heme Cofactor of Oxidized Myoglobin and Microperoxidase 11: Reduction or Coordination (2017) Dalton Trans., 46 (24), pp. 7939-7946 Ruetz, M., Kumutima, J., Lewis, B.E., Filipovic, M.R., Lehnert, N., Stemmler, T.L., Banerjee, R., A Distal Ligand Mutes the Interaction of Hydrogen Sulfide with Human Neuroglobin (2017) J. Biol. Chem., 292 (16), pp. 6512-6528 Laverman, L.E., Ford, P.C., Mechanistic Studies of Nitric Oxide Reactions with Water Soluble Iron(II), Cobalt(II), and Iron(III) Porphyrin Complexes in Aqueous Solutions: Implications for Biological Activity (2001) J. Am. Chem. Soc., 123 (47), pp. 11614-11622 Polticelli, F., Zobnina, V., Ciaccio, C., De Sanctis, G., Ascenzi, P., Coletta, M., Enhanced Heme Accessibility in Horse Heart Mini-Myoglobin: Insights from Molecular Modelling and Reactivity Studies (2015) Arch. Biochem. Biophys., 585, pp. 1-9 De Sanctis, G., Petrella, G., Ciaccio, C., Feis, A., Smulevich, G., Coletta, M., A Comparative Study on Axial Coordination and Ligand Binding in Ferric Mini Myoglobin and Horse Heart Myoglobin (2007) Biophys. J., 93 (6), pp. 2135-2142 Forti, F., Boechi, L., Estrin, D.A., Marti, M.A., Comparing and Combining Implicit Ligand Sampling with Multiple Steered Molecular Dynamics to Study Ligand Migration Processes in Heme Proteins (2011) J. Comput. Chem., 32 (10), pp. 2219-2231 Cuevasanta, E., Lange, M., Bonanata, J., Coitino, E.L., Ferrer-Sueta, G., Filipovic, M.R., Alvarez, B., Reaction of Hydrogen Sulfide with Disulfide and Sulfenic Acid to Form the Strongly Nucleophilic Persulfide (2015) J. Biol. Chem., 290 (45), pp. 26866-26880 Zhong, F., Lisi, G.P., Collins, D.P., Dawson, J.H., Pletneva, E.V., Redox-Dependent Stability, Protonation, and Reactivity of Cysteine-Bound Heme Proteins (2014) Proc. Natl. Acad. Sci. U. S. A., 111 (3), pp. E306-E315 Marques, H.M., Peroxidase Activity of the Hemeoctapeptide N -Acetylmicroperoxidase-8 (2005) Inorg. Chem., 44 (18), pp. 6146-6148 |
| ISSN: | 00201669 |
| DOI: | 10.1021/acs.inorgchem.8b00478 |