Mechanism of Sulfide Binding by Ferric Hemeproteins

The reaction of hydrogen sulfide (H2S) with hemeproteins is a key physiological reaction; still, its mechanism and implications are not completely understood. In this work, we propose a combination of experimental and theoretical tools to shed light on the reaction in model system microperoxidase 11...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Boubeta, F.M
Otros Autores: Bieza, S.A, Bringas, M., Estrin, D.A, Boechi, L., Bari, S.E
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2018
Materias:
PH
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 20159caa a22014417a 4500
001 PAPER-25152
003 AR-BaUEN
005 20230518205709.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85049403471 
024 7 |2 cas  |a sulfide, 18496-25-8; Hemeproteins; Sulfides 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a INOCA 
100 1 |a Boubeta, F.M. 
245 1 0 |a Mechanism of Sulfide Binding by Ferric Hemeproteins 
260 |b American Chemical Society  |c 2018 
270 1 0 |m Bari, S.E.; Instituto de Química Física de Los Materiales, Medio Ambiente y Energía, CONICET, Universidad de Buenos AiresArgentina; email: bari@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Pavlik, J.W., Noll, B.C., Oliver, A.G., Schulz, C.E., Scheidt, W.R., Hydrosulfide (HS -) Coordination in Iron Porphyrinates (2010) Inorg. Chem., 49 (3), pp. 1017-1026 
504 |a Kraus, D.W., Wittenberg, J.B., Hemoglobins of the Lucina Pectinata/Bacteria Symbiosis. I. Molecular Properties, Kinetics and Equilibria of Reactions with Ligands (1990) J. Biol. Chem., 265 (27), pp. 16043-16053 
504 |a Wang, D., Liu, L., Wang, H., Xu, H., Chen, L., Ma, L., Li, Z., Clues for Discovering a New Biological Function of Vitreoscilla Hemoglobin in Organisms: Potential Sulfide Receptor and Storage (2016) FEBS Lett., 590 (8), pp. 1132-1142 
504 |a Vitvitsky, V., Yadav, P.K., Kurthen, A., Banerjee, R., Sulfide Oxidation by a Noncanonical Pathway in Red Blood Cells Generates Thiosulfate and Polysulfides (2015) J. Biol. Chem., 290 (13), pp. 8310-8320 
504 |a Bostelaar, T., Vitvitsky, V., Kumutima, J., Lewis, B.E., Yadav, P.K., Brunold, T.C., Filipovic, M., Banerjee, R., Hydrogen Sulfide Oxidation by Myoglobin (2016) J. Am. Chem. Soc., 138 (27), pp. 8476-8488 
504 |a Boechi, L., Arrar, M., Martí, M.A., Olson, J.S., Roitberg, A.E., Estrin, D.A., Hydrophobic Effect Drives Oxygen Uptake in Myoglobin via Histidine E7 (2013) J. Biol. Chem., 288 (9), pp. 6754-6762 
504 |a Pietri, R., Lewis, A., León, R.G., Casabona, G., Kiger, L., Yeh, S.-R., Fernandez-Alberti, S., López-Garriga, J., Factors Controlling the Reactivity of Hydrogen Sulfide with Hemeproteins (2009) Biochemistry, 48 (22), pp. 4881-4894 
504 |a Pietri, R., León, R.G., Kiger, L., Marden, M.C., Granell, L.B., Cadilla, C.L., López-Garriga, J., Hemoglobin i from Lucina Pectinata: A Model for Distal Heme-Ligand Control (2006) Biochim. Biophys. Acta, Proteins Proteomics, 1764 (4), pp. 758-765 
504 |a Boubeta, F.M., Bari, S.E., Estrin, D.A., Boechi, L., Access and Binding of H 2 S to Hemeproteins: The Case of HbI of Lucina Pectinata (2016) J. Phys. Chem. B, 120 (36), pp. 9642-9653 
504 |a Bieza, S.A., Boubeta, F., Feis, A., Smulevich, G., Estrin, D.A., Boechi, L., Bari, S.E., Reactivity of Inorganic Sulfide Species toward a Heme Protein Model (2015) Inorg. Chem., 54 (2), pp. 527-533 
504 |a Watanabe, K., Suzuki, T., Kitagishi, H., Kano, K., Reaction between a Haemoglobin Model Compound and Hydrosulphide in Aqueous Solution (2015) Chem. Commun., 51 (19), pp. 4059-4061 
504 |a Zhao, Z., Wang, D., Wang, M., Sun, X., Wang, L., Huang, X., Ma, L., Li, Z., Proximal Environment Controlling the Reactivity between Inorganic Sulfide and Heme-Peptide Model (2016) RSC Adv., 6 (82), pp. 78858-78864 
504 |a Milani, M., Mycobacterium Tuberculosis Hemoglobin N Displays a Protein Tunnel Suited for O2 Diffusion to the Heme (2001) EMBO J., 20 (15), pp. 3902-3909 
504 |a Elber, R., Ligand Diffusion in Globins: Simulations versus Experiment (2010) Curr. Opin. Struct. Biol., 20 (2), pp. 162-167 
504 |a Perutz, M.F., Mathews, F.S., An X-Ray Study of Azide Methaemoglobin (1966) J. Mol. Biol., 21 (1), pp. 199-202 
504 |a Scott, E.E., Gibson, Q.H., Olson, J.S., Mapping the Pathways for O 2 Entry into and Exit from Myoglobin (2001) J. Biol. Chem., 276 (7), pp. 5177-5188 
504 |a Brunori, M., Structural Dynamics of Myoglobin (2000) Biophys. Chem., 86 (23), pp. 221-230 
504 |a Brunori, M., Vallone, B., Cutruzzola, F., Travaglini-Allocatelli, C., Berendzen, J., Chu, K., Sweet, R.M., Schlichting, I., The Role of Cavities in Protein Dynamics: Crystal Structure of a Photolytic Intermediate of a Mutant Myoglobin (2000) Proc. Natl. Acad. Sci. U. S. A., 97 (5), pp. 2058-2063 
504 |a Milani, M., Pesce, A., Ouellet, Y., Dewilde, S., Friedman, J., Ascenzi, P., Guertin, M., Bolognesi, M., Heme-Ligand Tunneling in Group i Truncated Hemoglobins (2004) J. Biol. Chem., 279 (20), pp. 21520-21525 
504 |a Mishra, S., Meuwly, M., Nitric Oxide Dynamics in Truncated Hemoglobin: Docking Sites, Migration Pathways, and Vibrational Spectroscopy from Molecular Dynamics Simulations (2009) Biophys. J., 96 (6), pp. 2105-2118 
504 |a Ouellet, Y.H., Daigle, R., Lagüe, P., Dantsker, D., Milani, M., Bolognesi, M., Friedman, J.M., Guertin, M., Ligand Binding to Truncated Hemoglobin N from Mycobacterium Tuberculosis Is Strongly Modulated by the Interplay between the Distal Heme Pocket Residues and Internal Water (2008) J. Biol. Chem., 283 (40), pp. 27270-27278 
504 |a Goldbeck, R.A., Bhaskaran, S., Ortega, C., Mendoza, J.L., Olson, J.S., Soman, J., Kliger, D.S., Esquerra, R.M., Water and Ligand Entry in Myoglobin: Assessing the Speed and Extent of Heme Pocket Hydration after CO Photodissociation (2006) Proc. Natl. Acad. Sci. U. S. A., 103 (5), pp. 1254-1259 
504 |a Olson, J.S., Phillips, G.N., Myoglobin Discriminates between O2, NO, and CO by Electrostatic Interactions with the Bound Ligand (1997) JBIC, J. Biol. Inorg. Chem., 2 (4), pp. 544-552 
504 |a Bustamante, J.P., Abbruzzetti, S., Marcelli, A., Gauto, D., Boechi, L., Bonamore, A., Boffi, A., Foggi, P., Ligand Uptake Modulation by Internal Water Molecules and Hydrophobic Cavities in Hemoglobins (2014) J. Phys. Chem. B, 118 (5), pp. 1234-1245 
504 |a Bustamante, J.P., Szretter, M.E., Sued, M., Martí, M.A., Estrin, D.A., Boechi, L., A Quantitative Model for Oxygen Uptake and Release in a Family of Hemeproteins (2016) Bioinformatics, 32 (12), pp. 1805-1813 
504 |a Cerda, J., Echevarria, Y., Morales, E., López-Garriga, J., Resonance Raman Studies of the Heme-Ligand Active Site of Hemoglobin i FromLucina Pectinata (1999) Biospectroscopy, 5 (5), pp. 289-301 
504 |a Nicoletti, F.P., Comandini, A., Bonamore, A., Boechi, L., Boubeta, F.M., Feis, A., Smulevich, G., Boffi, A., Sulfide Binding Properties of Truncated Hemoglobins (2010) Biochemistry, 49 (10), pp. 2269-2278 
504 |a Ascenzi, P., Sbardella, D., Santucci, R., Coletta, M., Cyanide Binding to Ferrous and Ferric Microperoxidase-11 (2016) JBIC, J. Biol. Inorg. Chem., 21 (4), pp. 511-522 
504 |a Dou, Y., Olson, J.S., Wilkinson, A.J., Ikeda-Saito, M., Mechanism of Hydrogen Cyanide Binding to Myoglobin (1996) Biochemistry, 35 (22), pp. 7107-7113 
504 |a Pálinkás, Z., Furtmüller, P.G., Nagy, A., Jakopitsch, C., Pirker, K.F., Magierowski, M., Jasnos, K., Nagy, P., Interactions of Hydrogen Sulfide with Myeloperoxidase: Sulfide Is a Substrate and Inhibitor of Myeloperoxidase (2015) Br. J. Pharmacol., 172 (6), pp. 1516-1532 
504 |a Hartle, M.D., Prell, J.S., Pluth, M.D., Spectroscopic Investigations into the Binding of Hydrogen Sulfide to Synthetic Picket-Fence Porphyrins (2016) Dalton Trans., 45 (11), pp. 4843-4853 
504 |a Jensen, B., Fago, A., Reactions of Ferric Hemoglobin and Myoglobin with Hydrogen Sulfide under Physiological Conditions (2018) J. Inorg. Biochem., 182, pp. 133-140 
504 |a Mot, A.C., Bischin, C., Damian, G., Attia, A.A.A., Gal, E., Dina, N., Leopold, N., Silaghi-Dumitrescu, R., Fe(III) - Sulfide Interaction in Globins: Characterization and Quest for a Putative Fe(IV)-Sulfide Species (2018) J. Inorg. Biochem., 179, pp. 32-39 
504 |a Marques, H.M., Insights into Porphyrin Chemistry Provided by the Microperoxidases, the Haempeptides Derived from Cytochrome C (2007) Dalton Trans., (39), p. 4371 
504 |a Carraway, A.D., Povlock, S.L., Houston, M.L., Johnston, D.S., Peterson, J., Monomeric Ferric Heme Peptide Derivatives: Model Systems for Hemoproteins (1995) J. Inorg. Biochem., 60 (4), pp. 267-276 
504 |a Marques, H., Perry, C., Hemepeptide Models for Hemoproteins: The Behavior of -Acetylmicroperoxidase-11 in Aqueous Solution (1999) J. Inorg. Biochem., 75 (4), pp. 281-291 
504 |a (2016) Mathematica, , version 10.4; Wolfram Research Inc: Champaign, IL 
504 |a Case, D.A., Babin, V., Berryman, J.T., Betz, R.M., Cai, Q., Cerutti, D.S., Cheatham, E.T., III, Gohlke, H., (2014) AMBER 14, , University of California: San Francisco, CA 
504 |a Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J.L., Dror, R.O., Shaw, D.E., Improved Side-Chain Torsion Potentials for the Amber Ff99SB Protein Force Field (2010) Proteins: Struct., Funct., Genet., pp. 1950-1958 
504 |a Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Pople, J.A., (2004) Gaussian 03, , revision C.02; Gaussian, Inc. Wallingford, CT 
504 |a Soldatova, A.V., Ibrahim, M., Olson, J.S., Czernuszewicz, R.S., Spiro, T.G., New Light on NO Bonding in Fe(III) Heme Proteins from Resonance Raman Spectroscopy and DFT Modeling (2010) J. Am. Chem. Soc., 132 (13), pp. 4614-4625 
504 |a Marti, M.A., Crespo, A., Capece, L., Boechi, L., Bikiel, D.E., Scherlis, D.A., Estrin, D.A., Dioxygen Affinity in Heme Proteins Investigated by Computer Simulation (2006) J. Inorg. Biochem., 100 (4), pp. 761-770 
504 |a Capece, L., Marti, M.A., Crespo, A., Doctorovich, F., Estrin, D.A., Heme Protein Oxygen Affinity Regulation Exerted by Proximal Effects (2006) J. Am. Chem. Soc., 128 (38), pp. 12455-12461 
504 |a Marti, M.A., Capece, L., Bidon-Chanal, A., Crespo, A., Guallar, V., Luque, F.J., Estrin, D.A., Nitric Oxide Reactivity with Globins as Investigated Through Computer Simulation (2008) Methods Enzymol., 437, pp. 477-498 
504 |a Martí, M.A., Capece, L., Bikiel, D.E., Falcone, B., Estrin, D.A., Oxygen Affinity Controlled by Dynamical Distal Conformations: The Soybean Leghemoglobin and the Paramecium Caudatum Hemoglobin Cases (2007) Proteins: Struct., Funct., Genet., 68 (2), pp. 480-487 
504 |a Perdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett., 77 (18), pp. 3865-3868 
504 |a Nadra, A.D., Martí, M.A., Pesce, A., Bolognesi, M., Estrin, D.A., Exploring the Molecular Basis of Heme Coordination in Human Neuroglobin (2008) Proteins: Struct., Funct., Genet., 71 (2), pp. 695-705 
504 |a Howes, B.D., Giordano, D., Boechi, L., Russo, R., Mucciacciaro, S., Ciaccio, C., Sinibaldi, F., Estrin, D.A., The Peculiar Heme Pocket of the 2/2 Hemoglobin of Cold-Adapted Pseudoalteromonas Haloplanktis TAC125 (2011) JBIC, J. Biol. Inorg. Chem., 16 (2), pp. 299-311 
504 |a Capece, L., Lewis-Ballester, A., Yeh, S.-R., Estrin, D.A., Marti, M.A., Complete Reaction Mechanism of Indoleamine 2,3-Dioxygenase as Revealed by QM/MM Simulations (2012) J. Phys. Chem. B, 116 (4), pp. 1401-1413 
504 |a Arroyo Manez, P., Lu, C., Boechi, L., Martí, M.A., Shepherd, M., Wilson, J.L., Poole, R.K., Estrin, D.A., Role of the Distal Hydrogen-Bonding Network in Regulating Oxygen Affinity in the Truncated Hemoglobin III from Campylobacter Jejuni (2011) Biochemistry, 50 (19), pp. 3946-3956 
504 |a Bidon-Chanal, A., Martí, M.A., Crespo, A., Milani, M., Orozco, M., Bolognesi, M., Luque, F.J., Estrin, D.A., Ligand-Induced Dynamical Regulation of NO Conversion in Mycobacterium Tuberculosis Truncated Hemoglobin-N (2006) Proteins: Struct., Funct., Genet., 64 (2), pp. 457-464 
504 |a Oliveira, A., Singh, S., Bidon-Chanal, A., Forti, F., Martí, M.A., Boechi, L., Estrin, D.A., Luque, F.J., Role of PheE15 Gate in Ligand Entry and Nitric Oxide Detoxification Function of Mycobacterium Tuberculosis Truncated Hemoglobin N (2012) PLoS One, 7 (11), p. e49291 
504 |a Boechi, L., Martí, M.A., Milani, M., Bolognesi, M., Luque, F.J., Estrin, D.A., Structural Determinants of Ligand Migration in Mycobacterium Tuberculosis Truncated Hemoglobin O (2008) Proteins: Struct., Funct., Genet., 73 (2), pp. 372-379 
504 |a Chai, J.-D., Head-Gordon, M., Long-Range Corrected Hybrid Density Functionals with Damped Atom-atom Dispersion Corrections (2008) Phys. Chem. Chem. Phys., 10 (44), p. 6615 
504 |a Sun, W., Nešić, S., Young, D., Woollam, R.C., Equilibrium Expressions Related to the Solubility of the Sour Corrosion Product Mackinawite (2008) Ind. Eng. Chem. Res., 47 (5), pp. 1738-1742 
504 |a Li, Q., Lancaster, J.R., Chemical Foundations of Hydrogen Sulfide Biology (2013) Nitric Oxide, 35, pp. 21-34 
504 |a Traylor, T.G., Deardurff, L.A., Coletta, M., Ascenzi, P., Antonini, E., Brunori, M., Reactivity of Ferrous Heme Proteins at Low pH (1983) J. Biol. Chem., 258 (20), pp. 12147-12148 
504 |a Giggenbach, W., Optical Spectra and Equilibrium Distribution of Polysulfide Ions in Aqueous Solution at 20.Deg (1972) Inorg. Chem., 11 (6), pp. 1201-1207 
504 |a Nagy, P., Mechanistic Chemical Perspective of Hydrogen Sulfide Signaling (2015) Methods Enzymol., 554, pp. 3-29 
504 |a Nagy, P., Pálinkás, Z., Nagy, A., Budai, B., Tóth, I., Vasas, A., Chemical Aspects of Hydrogen Sulfide Measurements in Physiological Samples (2014) Biochim. Biophys. Acta, Gen. Subj., 1840 (2), pp. 876-891 
504 |a Galardon, E., Huguet, F., Herrero, C., Ricoux, R., Artaud, I., Padovani, D., Reactions of Persulfides with the Heme Cofactor of Oxidized Myoglobin and Microperoxidase 11: Reduction or Coordination (2017) Dalton Trans., 46 (24), pp. 7939-7946 
504 |a Ruetz, M., Kumutima, J., Lewis, B.E., Filipovic, M.R., Lehnert, N., Stemmler, T.L., Banerjee, R., A Distal Ligand Mutes the Interaction of Hydrogen Sulfide with Human Neuroglobin (2017) J. Biol. Chem., 292 (16), pp. 6512-6528 
504 |a Laverman, L.E., Ford, P.C., Mechanistic Studies of Nitric Oxide Reactions with Water Soluble Iron(II), Cobalt(II), and Iron(III) Porphyrin Complexes in Aqueous Solutions: Implications for Biological Activity (2001) J. Am. Chem. Soc., 123 (47), pp. 11614-11622 
504 |a Polticelli, F., Zobnina, V., Ciaccio, C., De Sanctis, G., Ascenzi, P., Coletta, M., Enhanced Heme Accessibility in Horse Heart Mini-Myoglobin: Insights from Molecular Modelling and Reactivity Studies (2015) Arch. Biochem. Biophys., 585, pp. 1-9 
504 |a De Sanctis, G., Petrella, G., Ciaccio, C., Feis, A., Smulevich, G., Coletta, M., A Comparative Study on Axial Coordination and Ligand Binding in Ferric Mini Myoglobin and Horse Heart Myoglobin (2007) Biophys. J., 93 (6), pp. 2135-2142 
504 |a Forti, F., Boechi, L., Estrin, D.A., Marti, M.A., Comparing and Combining Implicit Ligand Sampling with Multiple Steered Molecular Dynamics to Study Ligand Migration Processes in Heme Proteins (2011) J. Comput. Chem., 32 (10), pp. 2219-2231 
504 |a Cuevasanta, E., Lange, M., Bonanata, J., Coitino, E.L., Ferrer-Sueta, G., Filipovic, M.R., Alvarez, B., Reaction of Hydrogen Sulfide with Disulfide and Sulfenic Acid to Form the Strongly Nucleophilic Persulfide (2015) J. Biol. Chem., 290 (45), pp. 26866-26880 
504 |a Zhong, F., Lisi, G.P., Collins, D.P., Dawson, J.H., Pletneva, E.V., Redox-Dependent Stability, Protonation, and Reactivity of Cysteine-Bound Heme Proteins (2014) Proc. Natl. Acad. Sci. U. S. A., 111 (3), pp. E306-E315 
504 |a Marques, H.M., Peroxidase Activity of the Hemeoctapeptide N -Acetylmicroperoxidase-8 (2005) Inorg. Chem., 44 (18), pp. 6146-6148 
520 3 |a The reaction of hydrogen sulfide (H2S) with hemeproteins is a key physiological reaction; still, its mechanism and implications are not completely understood. In this work, we propose a combination of experimental and theoretical tools to shed light on the reaction in model system microperoxidase 11 (MP11-FeIII) and myoglobin (Mb-FeIII), from the estimation of the intrinsic binding constants of the species H2S and hydrosulfide (HS-), and the computational description of the overall binding process. Our results show that H2S and HS- are the main reactive species in Mb-FeIII and MP11-FeIII, respectively, and that the magnitude of their intrinsic binding constants are similar to most of the binding constants reported so far for hemeproteins systems and model compounds. However, while the binding of HS- to Mb-FeIII was negligible, the binding of H2S to MP11-FeIII was significant, providing a frame for a discriminated analysis of both species and revealing differential mechanistic aspects. A joint inspection of the kinetic data and the free energy profiles of the binding processes suggests that a dissociative mechanism with the release of a coordinated water molecule as rate limiting step is operative in the binding of H2S to Mb-FeIII and that the binding of HS- is prevented in the access to the protein matrix. For the MP11-FeIII case, where no access restrictions for the ligands are present, an associative component in the mechanism seems to be operative. Overall, the results suggest that if accessing the active site then both H2S and HS- are capable of binding a ferric heme moiety. Copyright © 2018 American Chemical Society.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACYT 20020130100097BA 
536 |a Detalles de la financiación: PICT 2015−2761 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, 11220150100394CO, 11220150100303CO 
536 |a Detalles de la financiación: #F.M.B. and S.A.B. contributed equally to this work. Funding This research was supported by grants of the Universidad de Buenos Aires, UBACYT 20020130100097BA and Agencia Nacional de Promocioń Cientıfí ca y Tecnologica,́ PICT 2014− 1022, PICT 2015−2761, and CONICET grants 11220150100303CO and 11220150100394CO. Notes The authors declare no competing financial interest. 
593 |a Instituto de Química Física de Los Materiales, Medio Ambiente y Energía, CONICET, Universidad de Buenos Aires, Buenos Aires, 1053, Argentina 
593 |a Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Buenos Aires, 1053, Argentina 
593 |a Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1053, Argentina 
690 1 0 |a HEMOPROTEIN 
690 1 0 |a PROTEIN BINDING 
690 1 0 |a SULFIDE 
690 1 0 |a CHEMISTRY 
690 1 0 |a METABOLISM 
690 1 0 |a MOLECULAR MODEL 
690 1 0 |a PROTEIN CONFORMATION 
690 1 0 |a HEMEPROTEINS 
690 1 0 |a HYDROGEN-ION CONCENTRATION 
690 1 0 |a MODELS, MOLECULAR 
690 1 0 |a PROTEIN BINDING 
690 1 0 |a PROTEIN CONFORMATION 
690 1 0 |a SULFIDES 
650 1 7 |2 spines  |a PH 
700 1 |a Bieza, S.A. 
700 1 |a Bringas, M. 
700 1 |a Estrin, D.A. 
700 1 |a Boechi, L. 
700 1 |a Bari, S.E. 
773 0 |d American Chemical Society, 2018  |g v. 57  |h pp. 7591-7600  |k n. 13  |p Inorg. Chem.  |x 00201669  |w (AR-BaUEN)CENRE-60  |t Inorganic Chemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049403471&doi=10.1021%2facs.inorgchem.8b00478&partnerID=40&md5=7ebc62fb4b7da074fb3b94b3729cf6ec  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/acs.inorgchem.8b00478  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00201669_v57_n13_p7591_Boubeta  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00201669_v57_n13_p7591_Boubeta  |y Registro en la Biblioteca Digital 
961 |a paper_00201669_v57_n13_p7591_Boubeta  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 86105