Composite materials based on hybrid mesoporous solids for flow-through determination of ultratrace levels of Cd(ii)

In this work we present a solid phase extraction (SPE) flow-through system coupled to graphite furnace atomic absorption spectrometry (GFAAS) for the determination of Cd(ii) at ultratrace levels. The flow system holds a minicolumn which was filled, one at a time, with three different lab-made materi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Minaberry, Y.S
Otros Autores: Stripeikis, J., Tudino, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Royal Society of Chemistry 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08660caa a22010337a 4500
001 PAPER-25143
003 AR-BaUEN
005 20230518205709.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85049531362 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Minaberry, Y.S. 
245 1 0 |a Composite materials based on hybrid mesoporous solids for flow-through determination of ultratrace levels of Cd(ii) 
260 |b Royal Society of Chemistry  |c 2018 
270 1 0 |m Minaberry, Y.S.; Laboratorio de Trazas, INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II C1428EHA, Argentina; email: nani@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Cadmium (1993) IARC Monographs on the Evaluation of Carcinogenic Risk to Humans, 58, pp. 119-238 
504 |a Health Organization, W., (2006) Guidelines for Drinking-Water Quality, 1. , Geneva, 3rd edn, recommendations 
504 |a (2003) National Primary Drinking Water Standards 
504 |a Płotka-Wasylka, J., Szczepańska, N., De La Guardia, M., Namieśnik, J., (2016) TrAC, Trends Anal. Chem., 77, pp. 23-43 
504 |a (2015), http://www.waters.com/waters/en_PL/Beginner's-Guide-to-SPE-[Solid-Phase-Extraction]/nav.htm?locale=en_PL&cid=134721476; Buszewski, B., Szultka, M., (2012) Crit. Rev. Anal. Chem., 42, pp. 198-213 
504 |a Türker, A.R., (2012) Sep. Purif. Rev., 41, pp. 169-206 
504 |a Hu, B., He, M., Chen, B., (2015) Anal. Bioanal. Chem., 407, pp. 2685-2710 
504 |a Clough, R., Harrington, C.F., Hill, S.J., Madrid, Y., Tyson, J.F., (2013) J. Anal. At. Spectrom., 28, p. 1153 
504 |a Kim, M.L., Tudino, M.B., (2010) Talanta, 82, pp. 923-930 
504 |a Walcarius, A., Delacôte, C., (2005) Anal. Chim. Acta, 547, pp. 3-13 
504 |a Valtchev, V., Tosheva, L., (2013) Chem. Rev., 113, pp. 6734-6760 
504 |a Pyrzynska, K., (2010) TrAC, Trends Anal. Chem., 29, pp. 718-727 
504 |a Kocaoba, S., (2007) J. Hazard. Mater., 147, pp. 488-496 
504 |a Demirbas, A., Pehlivan, E., Gode, F., Altun, T., Arslan, G., (2005) J. Colloid Interface Sci., 282, pp. 20-25 
504 |a Wang, L., Hang, X., Chen, Y., Wang, Y., Feng, X., (2016) Anal. Lett., 49, pp. 818-830 
504 |a Wen, S., Zhu, X., Huang, Q., Wang, H., Xu, W., Zhou, N., (2014) Microchim. Acta, 181, pp. 1041-1047 
504 |a Mohajer, S., Chamsaz, M., Entezari, M.H., (2014) Anal. Methods, 6, pp. 9490-9496 
504 |a Augusto, F., Hantao, L.W., Noroska, G.S., Braga, S.C.G.N., (2013) TrAC, Trends Anal. Chem., 43, pp. 14-23 
504 |a Prasada Rao, T., Praveen, R.S., Daniel, S., (2004) Crit. Rev. Anal. Chem., 34, pp. 177-193 
504 |a Ahmad, A., Siddique, J.A., Laskar, M.A., Kumar, R., Mohd-Setapar, S.H., Khatoon, A., Shiekh, R.A., (2015) J. Environ. Sci., 31, pp. 104-123 
504 |a Harma, N.S., Tiwari, S., Saxena, R., (2016) RSC Adv., 6, pp. 10775-10782 
504 |a Walcarius, A., Collinson, M.M., (2009) Annu. Rev. Anal. Chem., 2, pp. 121-143 
504 |a Hoffmann, F., Cornelius, M., Morell, J., Fröba, M., (2006) Angew. Chem., Int. Ed., 45, pp. 3216-3251 
504 |a Hamoudi, S., El-Nemr, A., Belkacemi, K., (2010) J. Colloid Interface Sci., 343, pp. 615-621 
504 |a Parida, K.M., Rath, D., (2009) J. Mol. Catal. A: Chem., 310, pp. 93-100 
504 |a Sierra, I., Pérez-Quintanilla, D., (2013) Chem. Soc. Rev., 42, pp. 3792-3807 
504 |a Moulay, S., (2015) Polym.-Plast. Technol. Eng., 54, pp. 1289-1319 
504 |a Yu Zhao, Y., Zhai, S., Bin Zhai, B., An, Q., (2012) J. Sol-Gel Sci. Technol., 62, pp. 177-185 
504 |a Zhao, B., He, M., Chen, B., Hu, B., (2015) Spectrochim. Acta, Part B, 107, pp. 115-124 
504 |a Imamoglu, M., Pérez-Quintanilla, D., Sierra, I., (2016) Microporous Mesoporous Mater., 229, pp. 90-97 
504 |a Heidari, A., Younesi, H., Mehraban, Z., (2009) Chem. Eng. J., 153, pp. 70-79 
504 |a Silva, L.C.C.D., Santos, L.B.O.D., Abate, G., Cosentino, I.C., Fantini, M.C.A., Masini, J.C., Matos, J.R., (2008) Microporous Mesoporous Mater., 110, pp. 250-259 
504 |a Lu, Y.K., Tan, J., Yan, X.P., (2004) Anal. Chem., 77, pp. 453-457 
504 |a Irani, M., Keshtkar, A.R., Moosavian, M.A., (2012) Chem. Eng. J., 200, pp. 192-201 
504 |a Irani, M., Keshtkar, A.R., Mousavian, M.A., (2011) Chem. Eng. J., 175, pp. 251-259 
504 |a Ganan, J., Morante-Zarcero, S., Perez-Quintanilla, D., Sierra, I., (2015) Anal. Methods, 7, pp. 4740-4749 
504 |a Chiron, N., Guilet, R., Deydier, E., (2003) Water Res., 37, pp. 3079-3086 
504 |a Singare, P.U., Lokhande, R.S., Madyal, R.S., (2011) Open J. Phys. Chem., 1, pp. 45-54 
504 |a Mansur, H.S., Oréfice, R.L., Mansur, A.A.P., (2004) Polymer, 45, pp. 7193-7202 
504 |a Stumm, W., Morgan, J.J., (1995) Aquatic Chemistry, , Wiley &Sons, New York, 3rd edn 
520 3 |a In this work we present a solid phase extraction (SPE) flow-through system coupled to graphite furnace atomic absorption spectrometry (GFAAS) for the determination of Cd(ii) at ultratrace levels. The flow system holds a minicolumn which was filled, one at a time, with three different lab-made materials: (a) mesoporous silica functionalized with 3-aminopropyl groups from 3-aminopropyl triethoxysilane (HMS); (b) HMS with a resin, Amberlite IR120; and (c) HMS-Amberlite IR120 and polyvinyl alcohol (PVA). All the solids were characterized by FTIR and SEM. Batch experiments were performed in order to study the optimum adsorption pH, the adsorption kinetics and the maximum adsorption capacity. The materials were compared in terms of their aptitude for the pre-concentration of the analyte under dynamic conditions. Microvolumes of HCl were employed for the release of cadmium and its introduction into the electrothermal atomizer. The operational variables of the flow system were also tested and optimized. A comparison of the figures of merit revealed that HMS-A-PVA was the best option from an analytical point of view: limit of detection = 4.7 ng L-1, limit of quantification = 16 ng L-1, RSD% = 4 (n = 6, 100 ng L-1), linear range: from LOQ up to 200 ng L-1 and a lifetime of over 600 cycles with no obstructions to the free movement of fluids, material bleeding or changes in the analytical sensitivity. The proposed method was shown to be tolerant to several ions typically present in natural waters and was successfully applied to the determination of traces of Cd(ii) in real samples. A full discussion of the main findings with emphasis on the metal ion/filling interaction is provided. © 2018 The Royal Society of Chemistry.  |l eng 
593 |a Laboratorio de Trazas, INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II C1428EHA, Buenos Aires, Argentina 
593 |a Departamento de Ingeniería Química, Instituto Tecnológico de Buenos Aires. Av Eduardo Madero 399 C1106, Buenos Aires, Argentina 
690 1 0 |a ABSORPTION SPECTROSCOPY 
690 1 0 |a ADSORPTION 
690 1 0 |a ATOMIC ABSORPTION SPECTROMETRY 
690 1 0 |a CHLORINE COMPOUNDS 
690 1 0 |a HYBRID MATERIALS 
690 1 0 |a MESOPOROUS MATERIALS 
690 1 0 |a METAL IONS 
690 1 0 |a METALS 
690 1 0 |a PHASE SEPARATION 
690 1 0 |a SILICA 
690 1 0 |a TRACE ANALYSIS 
690 1 0 |a ADSORPTION CAPACITIES 
690 1 0 |a ELECTROTHERMAL ATOMIZER 
690 1 0 |a FLOW-THROUGH SYSTEMS 
690 1 0 |a GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY 
690 1 0 |a LIMIT OF QUANTIFICATIONS 
690 1 0 |a OPERATIONAL VARIABLES 
690 1 0 |a POLY (VINYL ALCOHOL) (PVA) 
690 1 0 |a SOLID-PHASE EXTRACTION 
690 1 0 |a CADMIUM COMPOUNDS 
700 1 |a Stripeikis, J. 
700 1 |a Tudino, M. 
773 0 |d Royal Society of Chemistry, 2018  |g v. 10  |h pp. 3144-3152  |k n. 26  |p Anal. Methods  |x 17599660  |t Analytical Methods 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049531362&doi=10.1039%2fc8ay00879e&partnerID=40&md5=bb8d2cba0ee3e566801a863ee61c47f1  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1039/c8ay00879e  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_17599660_v10_n26_p3144_Minaberry  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17599660_v10_n26_p3144_Minaberry  |y Registro en la Biblioteca Digital 
961 |a paper_17599660_v10_n26_p3144_Minaberry  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86096