Improved biovolume estimation of Microcystis aeruginosa colonies: A statistical approach

The Microcystis aeruginosa complex (MAC) clusters many of the most common freshwater and brackish bloom-forming cyanobacteria. In monitoring protocols, biovolume estimation is a common approach to determine MAC colonies biomass and useful for prediction purposes. Biovolume (μm3 mL−1) is calculated m...

Descripción completa

Detalles Bibliográficos
Autor principal: Alcántara, I.
Otros Autores: Piccini, Claudia, Segura Castillo, Angel Manuel, Deus, S., González, C., Martínez de la Escalera, Gabriela, Kruk Gencarelli, Carla Cecilia
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 19683caa a22013577a 4500
001 PAPER-25134
003 AR-BaUEN
005 20241125131316.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85048475441 
030 |a JMIMD 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Alcántara, I. 
245 1 0 |a Improved biovolume estimation of Microcystis aeruginosa colonies: A statistical approach 
260 |b Elsevier B.V.  |c 2018 
270 1 0 |m Alcántara, I.; Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Avenida Italia 3318, Uruguay; email: nalcann@gmail.com 
504 |a Agostinho, A.A., Pelicice, F.M., Petry, A.C., Gomes, L.C., Júlio, H.F., Fish diversity in the upper Paraná River basin: habitats, fisheries, management and conservation (2007) Aquat. Ecosyst. Health Manag., 10, pp. 174-186 
504 |a Armon, R.H., Starosvetsky, J., Armon, R.H., Hänninen, O., Algal bloom indicators (2015) Environmental Indicators, pp. 633-642. , Springer Netherlands Dordrecht 
504 |a Bertani, I., Steger, C.E., Obenour, D.R., Fahnenstiel, G.L., Bridgeman, T.B., Johengen, T.H., Sayers, M.J., Scavia, D., Tracking cyanobacteria blooms: do different monitoring approaches tell the same story? (2017) Sci. Total Environ., 575, pp. 294-308 
504 |a Bonetto, A., Neiff, J., Di Persia, D., The Paraná river system (1986) The Ecology of River Systems, pp. 541-598. , Springer 
504 |a Breiman, L., Random forests (2001) Mach. Learn., 45, pp. 5-32 
504 |a Bridgeman, T.B., Chaffin, J.D., Filbrun, J.E., A novel method for tracking western Lake Erie Microcystis blooms, 2002–2011 (2013) J. Great Lakes Res., 39, pp. 83-89 
504 |a Bullerjahn, G.S., McKay, R.M., Davis, T.W., Baker, D.B., Boyer, G.L., D'Anglada, L.V., Doucette, G.J., Wilhelm, S.W., Global solutions to regional problems: collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study (2016) Harmful Algae, 54, pp. 223-238 
504 |a Calliari, D., Gómez, M., Gómez, N., Biomass and composition of the phytoplankton in the Río de la Plata: large-scale distribution and relationship with environmental variables during a spring cruise (2005) Cont. Shelf Res., 25, pp. 197-210 
504 |a Chalar, G., The use of phytoplankton patterns of diversity for algal bloom management (2009) Limnologica-Ecol. Manag. Inland Waters, 39, pp. 200-208 
504 |a Chorus, I., Current Approaches to Cyanotoxin Risk Assessment, Risk Management and Regulations in Different Countries (2012), pp. 63-2012. , Federal Environmental Agency (Umweltbundesamt) Germany, Dessau; Chorus, I., Bartram, J., (1999) Toxic Cyanobacteria in Water: A Guide to their Public Health Consequences, Monitoring, and Management, , (Eds.) E & FN Spon London New York 
504 |a Dreiseitl, S., Ohno-Machado, L., Logistic regression and artificial neural network classification models: a methodology review (2002) J. Biomed. Inform., 35, pp. 352-359 
504 |a Ferrari, G., del Carmen Perez, M., Dabezies, M., Miguez, D., Saizar, C., Planktic cyanobacteria in the lower Uruguay River, South America (2011) FOTTEA, 11, pp. 225-234 
504 |a Gandola, E., Antonioli, M., Traficante, A., Franceschini, S., Scardi, M., Congestri, R., ACQUA: automated cyanobacterial quantification algorithm for toxic filamentous genera using spline curves, pattern recognition and machine learning (2016) J. Microbiol. Methods, 124, pp. 48-56 
504 |a Grömping, U., Variable importance assessment in regression: linear regression versus random forest (2009) Am. Stat., 63, pp. 308-319 
504 |a Guerrero, R.A., Acha, E.M., Lasta, C.A., Physical oceanography of the Río de la Plata estuary, Argentina (1997) Cont. Shelf Res., 17, pp. 727-742 
504 |a Hastie, T., Tibshirani, R., Friedman, J., Overview of supervised learning (2009) The Elements of Statistical Learning, pp. 9-41. , Springer 
504 |a Hawkins, P.R., Holliday, J., Kathuria, A., Bowling, L., Change in cyanobacterial biovolume due to preservation by Lugol's Iodine (2005) Harmful Algae, 4, pp. 1033-1043 
504 |a Hillebrand, H., Dürselen, C.-D., Kirschtel, D., Pollingher, U., Zohary, T., Biovolume calculation for pelagic and benthic microalgae (1999) J. Phycol., 35, pp. 403-424 
504 |a Jakobsen, H., Carstensen, J., FlowCAM: sizing cells and understanding the impact of size distributions on biovolume of planktonic community structure (2011) Aquat. Microb. Ecol., 65, pp. 75-87 
504 |a James, G., Witten, D., Hastie, T., Tibshirani, R., An introduction to statistical learning (2013) Springer Texts in Statistics, , Springer New York New York, NY 
504 |a Joung, S., Kim, C., Ahn, C., Jang, K., Boo, S.M., Oh, H., Simple method for a cell count of the colonial cyanobacterium, Microcystis sp (2006) J. Microbiol.-Seoul, 44, p. 562 
504 |a Komárek, J., Komárková, J., Review of the European microcystis-morphospecies (Cyanoprokaryotes) from nature (2002) Czech Phycol. Olomouc, 2, pp. 1-24 
504 |a Kruk, C., Segura, A.M., Nogueira, L., Alcántara, I., Calliari, D., Martínez de la Escalera, G., Carballo, C., Piccini, C., A multilevel trait-based approach to the ecological performance of Microcystis aeruginosa complex from headwaters to the ocean (2017) Harmful Algae, 70, pp. 23-36 
504 |a Kudela, R.M., Palacios, S.L., Austerberry, D.C., Accorsi, E.K., Guild, L.S., Torres-Perez, J., Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters (2015) Remote Sens. Environ., 167, pp. 196-205 
504 |a Lehman, P.W., Boyer, G., Hall, C., Waller, S., Gehrts, K., Distribution and toxicity of a new colonial Microcystis aeruginosa bloom in the San Francisco Bay Estuary, California (2005) Hydrobiologia, 541, pp. 87-99 
504 |a Lehman, P.W., Teh, S.J., Boyer, G.L., Nobriga, M.L., Bass, E., Hogle, C., Initial impacts of Microcystis aeruginosa blooms on the aquatic food web in the San Francisco Estuary (2010) Hydrobiologia, 637, pp. 229-248 
504 |a Liaw, A., Wiener, M., Classification and Regression by randomForest (2002), 2, pp. 18-22. , R news; Lyakh, A., The Free Form Deformation of Phytoplankton Models (2002) Computational Science—ICCS 2002: International Conference Amsterdam, the Netherlands, April 21–24, 2002 Proceedings, Part III, pp. 194-201. , P.M.A. Sloot A.G. Hoekstra C.J.K. Tan J.J. Dongarra Springer Berlin Heidelberg Berlin, Heidelberg 
504 |a Lyakh, A., A new method for accurate estimation of diatom biovolume and surface area (2007), pp. 113-116. , Botanic Garden and Botanical Museum Berlin-Dahlem; Martínez de la Escalera, G., Kruk, C., Segura, A.M., Nogueira, L., Alcántara, I., Piccini, C., Dynamics of toxic genotypes of Microcystis aeruginosa complex (MAC) through a wide freshwater to marine environmental gradient (2017) Harmful Algae, 62, pp. 73-83 
504 |a Medeiros Fonseca, B., Ferragut, C., Tucci, A., Crossetti, L.O., Ferrari, F., de Campos Bicudo, D., Sant'Anna, C.L., de Mattos Bicudo, C.E., Biovolume De Cianobactérias E Algas De Reservatórios Tropicais Do Brasil Com Diferentes Estados Tróficos (2014), 41, pp. 9-30; Mituleţu, M., Drugă, B., Hegedus, A., Coman, C., Dragoş, N., Phylogenetic analysis of Microcystis strains (Cyanobacteria) based on the 16S-23S its and cpcBA-IGS markers (2013) Ann. RSCB, 18 
504 |a Moberg, E.A., Sosik, H.M., Distance maps to estimate cell volume from two-dimensional plankton images: distance map cell volume algorithm (2012) Limnol. Oceanogr. Methods, 10, pp. 278-288 
504 |a Moss, B., Kosten, S., Meerhoff, M., Battarbee, R.W., Jeppesen, E., Mazzeo, N., Havens, K., Scheffer, M., Allied attack: climate change and eutrophication (2011) Inland Waters, 1, pp. 101-105 
504 |a Napiórkowska-Krzebietke, A., Kobos, J., Assessment of the cell biovolume of phytoplankton widespread in coastal and inland water bodies (2016) Water Res., 104, pp. 532-546 
504 |a Olenina, I., Biovolumes and Size-Classes of Phytoplankton in the Baltic Sea (2006); Otsuka, S., Suda, S., Li, R., Watanabe, M., Oyaizu, H., Matsumoto, S., Watanabe, M.M., Characterization of morphospecies and strains of the genus Microcystis (Cyanobacteria) for a reconsideration of species classification (1999) Phycol. Res., 47, pp. 189-197 
504 |a Otsuka, S., Suda, S., Li, R., Matsumoto, S., Watanabe, M.M., Morphological variability of colonies of Microcystis morphospecies in culture (2000) J. Gen. Appl. Microbiol., 46, pp. 39-50 
504 |a Paerl, H.W., Huisman, J., Climate change: a catalyst for global expansion of harmful cyanobacterial blooms (2009) Environ. Microbiol. Rep., 1, pp. 27-37 
504 |a Piñeiro, G., Perelman, S., Guerschman, J.P., Paruelo, J.M., How to evaluate models: observed vs. predicted or predicted vs. observed? (2008) Ecol. Model., 216, pp. 316-322 
504 |a Pobel, D., Robin, J., Humbert, J.-F., Influence of sampling strategies on the monitoring of cyanobacteria in shallow lakes: lessons from a case study in France (2011) Water Res., 45, pp. 1005-1014 
504 |a R Core Team, R: A Language and Environment for Statistical Computing (2016), R Foundation for Statistical Computing Vienna, Austria; Reynolds, C.S., Variability in the provision and function of mucilage in phytoplankton: facultative responses to the environment (2007) Hydrobiologia, 578, pp. 37-45 
504 |a Reynolds, C.S., Jaworski, G.H.M., Enumeration of natural Microcystis populations (1978) Br. Phycol. J., 13, pp. 269-277 
504 |a Reynolds, C.S., Jaworski, G.H.M., Cmiech, H.A., Leedale, G.F., On the annual cycle of the blue-green alga Microcystis aeruginosa kutz. Emend. Elenkin (1981), 293, pp. 419-477. , Philosophical Transactions of the Royal Society of London. Series B, Biological Sciencies; Reynolds, C.S., Huszar, V., Kruk, C., Naselli-Flores, L., Melo, S., Towards a functional classification of the freshwater phytoplankton (2002) J. Plankton Res., 24, pp. 417-428 
504 |a Rigonato, J., Sant'Anna, C.L., Giani, A., Azevedo, M.T.P., Gama, W.A., Viana, V.F.L., Fiore, M.F., Werner, V.R., Sphaerocavum: a coccoid morphogenus identical to microcystis in terms of 16S rDNA and ITS sequence phylogenies (2017) Hydrobiologia 
504 |a Roselli, L., Paparella, F., Stanca, E., Basset, A., New data-driven method from 3D confocal microscopy for calculating phytoplankton cell: Calculating phytoplankton cell biovolume (2015) J. Microsc., 258, pp. 200-211 
504 |a Rott, E., Salmaso, N., Hoehn, E., Quality control of Utermöhl-based phytoplankton counting and biovolume estimates—an easy task or a Gordian knot? (2007) Hydrobiologia, 578, pp. 141-146 
504 |a Saccà, A., Methods for the estimation of the biovolume of microorganisms: a critical review: methods biovolume of microorganisms (2017) Limnol. Oceanogr. Methods, 15, pp. 337-348 
504 |a Segura, A.M., Piccini, C., Nogueira, L., Alcántara, I., Calliari, D., Kruk, C., Increased sampled volume improves Microcystis aeruginosa complex (MAC) colonies detection and prediction using random forests (2017) Ecol. Indic., 79, pp. 347-354 
504 |a Shen, H., Niu, Y., Xie, P., Tao, M., Yang, X., Morphological and physiological changes in microcystis aeruginosa as a result of interactions with heterotrophic bacteria: microcystis-heterotrophic bacterial community interactions (2011) Freshw. Biol., 56, pp. 1065-1080 
504 |a Sukenik, A., Quesada, A., Salmaso, N., Global expansion of toxic and non-toxic cyanobacteria: effect on ecosystem functioning (2015) Biodivers. Conserv., 24, pp. 889-908 
504 |a Sun, J., Liu, D., Geometric models for calculating cell biovolume and surface area for phytoplankton (2003) J. Plankton Res., 25, pp. 1331-1346 
504 |a Therneau, T., Atkinson, B., Ripley, B., rpart: Recursive Partitioning and Regression Trees No. R package version (2015), 4, pp. 1-10; Trainer, V., Hardy, F., Integrative monitoring of marine and freshwater harmful algae in Washington state for public health protection (2015) Toxins, 7, pp. 1206-1234 
504 |a Vadrucci, M., Cabrini, M., Basset, A., Biovolume determination of phytoplankton guilds in transitional water ecosystems of Mediterranean Ecoregion (2007) Transit. Waters Bull., 1, pp. 83-102 
504 |a Vadrucci, M.R., Mazziotti, C., Fiocca, A., Cell biovolume and surface area in phytoplankton of Mediterranean transitional water ecosystems: methodological aspects (2013) Transit. Waters Bull., 7, pp. 100-123 
504 |a van Gremberghe, I., Leliaert, F., Mergeay, J., Vanormelingen, P., Van der Gucht, K., Debeer, A.-E., Lacerot, G., Vyverman, W., Lack of Phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal (2011) PLoS One, 6 
504 |a Vidal, L., Fabre, A., Gabito, L., Kruk, C., Gravier, A., Britos, A., del Carmen Péres, M., Bonilla, S., Fichas de identificación de las especies (2009) Cianobacterias Planctónicas Del Uruguay. Manual Para La Identificación Y Medidas de Gestión., Documento Tecnico PHI-LAC, , S. Bonilla UNESCO Uruguay 
504 |a Wang, C., Wu, X., Tian, C., Li, Q., Tian, Y., Feng, B., Xiao, B., A quantitative protocol for rapid analysis of cell density and size distribution of pelagic and benthic Microcystis colonies by FlowCAM (2015) J. Appl. Phycol., 27, pp. 711-720 
504 |a Wickham, H., ggplot2: Elegant Graphics for Data Analysis (2016), Springer New York; Wu, Z., Song, L., Physiological comparison between colonial and unicellular forms of Microcystis aeruginosa Kütz.(Cyanobacteria) (2008) Phycologia, 47, pp. 98-104 
504 |a Zhang, M., Kong, F., Tan, X., Yang, Z., Cao, H., Xing, P., Biochemical, morphological, and genetic variations in Microcystis aeruginosa due to colony disaggregation (2007) World J. Microbiol. Biotechnol., 23, pp. 663-670 
504 |a Zhu, W., Li, M., Luo, Y., Dai, X., Guo, L., Xiao, M., Huang, J., Tan, X., Vertical distribution of Microcystis colony size in Lake Taihu: its role in algal blooms (2014) J. Great Lakes Res., 40, pp. 949-955 
506 |2 openaire  |e Política editorial 
520 3 |a The Microcystis aeruginosa complex (MAC) clusters many of the most common freshwater and brackish bloom-forming cyanobacteria. In monitoring protocols, biovolume estimation is a common approach to determine MAC colonies biomass and useful for prediction purposes. Biovolume (μm3 mL−1) is calculated multiplying organism abundance (orgL−1) by colonial volume (μm3org−1). Colonial volume is estimated based on geometric shapes and requires accurate measurements of dimensions using optical microscopy. A trade-off between easy-to-measure but low-accuracy simple shapes (e.g. sphere) and time costly but high-accuracy complex shapes (e.g. ellipsoid) volume estimation is posed. Overestimations effects in ecological studies and management decisions associated to harmful blooms are significant due to the large sizes of MAC colonies. In this work, we aimed to increase the precision of MAC biovolume estimations by developing a statistical model based on two easy-to-measure dimensions. We analyzed field data from a wide environmental gradient (800 km) spanning freshwater to estuarine and seawater. We measured length, width and depth from ca. 5700 colonies under an inverted microscope and estimated colonial volume using three different recommended geometrical shapes (sphere, prolate spheroid and ellipsoid). Because of the non-spherical shape of MAC the ellipsoid resulted in the most accurate approximation, whereas the sphere overestimated colonial volume (3–80) especially for large colonies (MLD higher than 300 μm). Ellipsoid requires measuring three dimensions and is time-consuming. Therefore, we constructed different statistical models to predict organisms depth based on length and width. Splitting the data into training (2/3) and test (1/3) sets, all models resulted in low training (1.41–1.44%) and testing average error (1.3–2.0%). The models were also evaluated using three other independent datasets. The multiple linear model was finally selected to calculate MAC volume as an ellipsoid based on length and width. This work contributes to achieve a better estimation of MAC volume applicable to monitoring programs as well as to ecological research. © 2018 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Convoctoria 2014 
536 |a Detalles de la financiación: Facultad de Ciencias, Universidad de los Andes 
536 |a Detalles de la financiación: We thank to Asociación Honoraria de Salvamentos Marítimos y Fluviales (ADES) and to Comisión Técnico-Mixta de Salto Grande (CTM-Salto Grande) for their valuable help in samplings campaigns. This study was supported by ANII-LATU and Comisión Administradora del Río Uruguay (CARU) ( Beca de grado, Convoctoria 2014 ). This work was carried out in partial fulfillment of the requirements of I. Alcántara for the Biological Sciences degree from Facultad de Ciencias (Universidad de la República, Uruguay). 
593 |a Sección Limnología, IECA, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay 
593 |a Ecología Funcional de Sistemas Acuáticos, CURE-Rocha, Universidad de la República, Ruta nacional Nª 9, Rocha, PC 27000, Uruguay 
593 |a Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Avenida Italia 3318, Montevideo, 11600, Uruguay 
593 |a Modelización y Análisis de Recursos Naturales, CURE-Rocha, Universidad de la República, Ruta nacional Nª 9, Rocha, PC 27000, Uruguay 
593 |a Laboratorio de Limnología, DEGE, Exactas y Naturales, UBA – Centro de Investigaciones, Agua y Saneamientos Argentinos, Int Güiraldes 2160, Buenos Aires, 1428, Argentina 
690 1 0 |a CYANOBACTERIA MONITORING 
690 1 0 |a HARMFUL ALGAL BLOOMS 
690 1 0 |a MACHINE LEARNING 
690 1 0 |a PHYTOPLANKTON COUNTING 
690 1 0 |a BRACKISH WATER 
690 1 0 |a FRESH WATER 
690 1 0 |a SEA WATER 
690 1 0 |a ARTICLE 
690 1 0 |a AUTUMN 
690 1 0 |a BACTERIUM COLONY 
690 1 0 |a BACTERIUM DETECTION 
690 1 0 |a BIOMASS 
690 1 0 |a ENVIRONMENTAL MONITORING 
690 1 0 |a MICROCYSTIS AERUGINOSA 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a SEASONAL VARIATION 
690 1 0 |a SPRING 
690 1 0 |a STATISTICAL MODEL 
690 1 0 |a WINTER 
700 1 |a Piccini, Claudia 
700 1 |a Segura Castillo, Angel Manuel 
700 1 |a Deus, S. 
700 1 |a González, C. 
700 1 |a Martínez de la Escalera, Gabriela 
700 1 |a Kruk Gencarelli, Carla Cecilia 
773 0 |d Elsevier B.V., 2018  |g v. 151  |h pp. 20-27  |p J. Microbiol. Methods  |x 01677012  |w (AR-BaUEN)CENRE-5677  |t Journal of Microbiological Methods 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048475441&doi=10.1016%2fj.mimet.2018.05.021&partnerID=40&md5=98e7dc2471a87ee0b9e926a058f1a575  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.mimet.2018.05.021  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01677012_v151_n_p20_Alcantara  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01677012_v151_n_p20_Alcantara  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_01677012_v151_n_p20_Alcantara  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion