Photophysics of Xanthene Dyes at High Concentrations in Solid Environments: Charge Transfer Assisted Triplet Formation

The photophysical behavior of two xanthene dyes, Eosin Y and Phloxine B, included in microcrystalline cellulose particles is studied in a wide concentration range, with emphasis on the effect of dye concentration on fluorescence and triplet quantum yields. Absolute fluorescence quantum yields in the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Litman, Y.E
Otros Autores: Rodríguez, H.B, Braslavsky, Silvia Elsa, San Román, E.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Blackwell Publishing Inc. 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16744caa a22011417a 4500
001 PAPER-25091
003 AR-BaUEN
005 20241101092114.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85052431171 
030 |a PHCBA 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Litman, Y.E. 
245 1 0 |a Photophysics of Xanthene Dyes at High Concentrations in Solid Environments: Charge Transfer Assisted Triplet Formation 
260 |b Blackwell Publishing Inc.  |c 2018 
270 1 0 |m San Román, E.; Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresArgentina; email: esr@qi.fcen.uba.ar 
504 |a López, S.G., Worringer, G., Rodríguez, H.B., San Román, E., Trapping of Rhodamine 6G excitation energy on cellulose microparticles (2010) Phys. Chem. Chem. Phys., 12, pp. 2246-2253 
504 |a Beddard, G.S., Porter, G., Concentration quenching in chlorophyll (1976) Nature, 260, pp. 366-367 
504 |a Litman, Y., Rodríguez, H.B., San Román, E., Tuning the concentration of dye loaded polymer films for maximum photosensitization efficiency: Phloxine B in poly(2-hydroxyethyl methacrylate) (2016) Photochem. Photobiol. Sci., 15, pp. 80-85 
504 |a Ezquerra Riega, S.D., Rodríguez, H.B., San Román, E., Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: Self-quenching by photoactive energy traps (2017) Methods Appl. Fluoresc., 5, p. 014010 
504 |a Rabinowitch, E.I., (1951) Photosynthesis and Related Processes, 2, p. 759. , Part 1, Interscience, Geneva, Switzerland 
504 |a Birks, J.B., (1970) Photophysics of Aromatic Molecules, , Wiley, London 
504 |a Mei, J., Leung, N.L.C., Kwok, R.T.K., Lam, J.W.Y., Tang, B.Z., Aggregation-induced emission: Together we shine, united we soar! (2015) Chem. Rev., 115, pp. 11718-11940 
504 |a Dong, Y., Crystallization-induced emission enhancement (2013) Aggregation-Induced Emission: Fundamentals, pp. 323-336. , (Edited by, Z. Tang, A. Qin, West Sussex, John Wiley & Sons Ltd 
504 |a Lucenti, E., Forni, A., Botta, C., Carlucci, L., Giannini, C., Marinotto, D., Previtali, A., Cariati, E., H-aggregates granting crystallization-induced emissive behavior and ultralong phosphorescence from a pure organic molecule (2017) J. Chem. Phys. Lett., 8, pp. 1894-1898 
504 |a Yang, L., Wang, X., Zhang, G., Chen, X., Zhang, G., Jiang, J., Aggregation-induced intersystem crossing: A novel strategy for efficient molecular phosphorescence (2016) Nanoscale, 8, pp. 17422-17426 
504 |a Hong, Y., Aggregation-induced emission-fluorophores and applications (2016) Methods Appl. Fluoresc., 4, p. 022003 
504 |a Lopez, S.G., Crovetto, L., Alvarez-Pez, J.M., Talavera, E.M., San Román, E., Fluorescence enhancement of a fluorescein derivative upon adsorption on cellulose (2014) Photochem. Photobiol. Sci., 13, pp. 1311-1320 
504 |a Booth, P.J., Crystall, B., Giorgi, L.B., Barber, J., Klug, D.R., Porter, G., Thermodynamic properties of D1/D2/cytochrome b-559 reaction centres investigated by time-resolved fluorescence measurements (1990) Biochim. Biophys. Acta, 1016, pp. 141-152 
504 |a Filatov, M.A., Karuthedath, S., Polestshuk, P.M., Savoie, H., Flanagan, K.J., Sy, C., Sitte, E., Senge, M.O., Generation of triplet excited states via photoinduced electron transfer in meso-anthra-BODIPY: Fluorogenic response toward singlet oxygen in solution and in vitro (2017) J. Am. Chem. Soc., 139, pp. 6282-6285 
504 |a Kim, Y., Zhou, N., Tohnai, H., Nakatsuji, M., Matsusaki, M., Fujitsuka, M.M., Majima, T., Aggregation-induced singlet oxygen generation: Functional fluorophore and anthrylphenylene dyad self-assemblies (2018) Chem. An Eur. J., 24, pp. 636-645 
504 |a Williams, R.M., Chen, H.C., Nuzzo, D.D., Meskers, S.C.J., Janssen, R.A.J., Ultrafast charge and triplet state formation in diketopyrrolopyrrole low band gap polymer/fullerene blends: Influence of nanoscale morphology of organic photovoltaic materials on charge recombination to the triplet state (2017) J. Spectrosc., 2017, pp. 1-16 
504 |a Rao, A., Chow, P.C.Y., Gélinas, S., Schlenker, C.W., Li, C.Z., Yip, H.L., Jen, A.K.Y., Friend, R.H., The role of spin in the kinetic control of recombination in organic photovoltaics (2013) Nature, 500, pp. 435-439 
504 |a Rodríguez, H.B., San Román, E., Duarte, P., Ferreira Machado, I., Vieira Ferreira, L.F., Eosin Y triplet state as a probe of spatial heterogeneity in microcrystalline cellulose (2012) Photochem. Photobiol., 88, pp. 831-839 
504 |a Duarte, P., Ferreira, D.P., Ferreira Machado, I., Vieira Ferreira, L.F., Rodríguez, H.B., San Román, E., Phloxine B as a probe for entrapment in microcrystalline cellulose (2012) Molecules, 17, pp. 1602-1616 
504 |a Wilkinson, F., Leicester, P.A., Vieira Ferreira, L.F., Freire, V.M.M.R., Photochemistry on surfaces: Triplet-triplet energy transfer on microcrystalline cellulose studied by diffuse reflectance transient absorption and emission spectroscopy (1991) Photochem. Photobiol., 54, pp. 599-608 
504 |a Mirenda, M., Lagorio, M.G., San Román, E., Photophysics on surfaces: Determination of absolute fluorescence quantum yields from reflectance spectra (2004) Langmuir, 20, pp. 3690-3697 
504 |a Wendlandt, W.W., Hecht, H.G., (1966) Reflectance Spectroscopy, pp. 55-76. , Chapter. 3, Wiley Interscience, New York, NY 
504 |a Tomasini, E.P., Braslavsky, S.E., San Román, E., Triplet quantum yields in light-scattering powder samples measured by Laser-Induced Optoacoustic Spectroscopy (LIOAS) (2012) Photochem. Photobiol. Sci., 11, pp. 1010-1017 
504 |a Tomasini, E.P., San Román, E., Braslavsky, S.E., Validation of fluorescence quantum yields for light-scattering powdered samples by Laser-Induced Optoacoustic Spectroscopy (2009) Langmuir, 25, pp. 5861-5868 
504 |a Kessler, R.W., Krabichler, G., Uhl, S., Oelkrug, D., Hagan, W.P., Hyslop, J., Wilkinson, F., Transient decay following pulse excitation of diffuse scattering samples (1983) Optica Acta, 8, pp. 1099-1111 
504 |a Litman, Y., Voss, M.G., Rodríguez, H.B., San Román, E., Effect of concentration on the formation of rose bengal triplet state on microcrystalline cellulose: A combined laser-induced optoacoustic spectroscopy, diffuse reflectance flash photolysis and luminescence study (2014) J. Phys. Chem. A, 118, pp. 10531-10537 
504 |a Lagorio, M.G., Dicelio, L.E., Litter, M.I., San Román, E., Modeling of fluorescence quantum yields of supported dyes. Aluminum carboxyphthalocyanine on cellulose (1998) J. Chem. Soc., Faraday Trans., 94, pp. 419-425 
504 |a Rodríguez, H.B., Lagorio, M.G., San Román, E., Rose bengal adsorbed on microgranular cellulose: Evidence on fluorescent dimers (2004) Photochem. Photobiol. Sci., 3, pp. 674-680 
504 |a Rodríguez, H.B., San Román, E., Effect of concentration on the photophysics of dyes in light scattering materials (2013) Photochem. Photobiol., 89, pp. 1273-1282 
504 |a Zhang, X.-F., Zhang, J., Liu, L., Fluorescence Properties of Twenty Fluorescein derivatives: Lifetime, quantum yield, absorption and emission spectra (2014) J. Fluoresc., 24, pp. 819-826 
504 |a Kasha, M., Rawls, H.R., Ashraf El-Bayoumi, M., The exciton model in molecular spectroscopy (1965) Pure Appl. Chem., 2, pp. 371-391 
504 |a Kasha, M., Energy transfer mechanism and the molecular exciton model for molecular aggregates (1963) Radiat. Res., 20, pp. 55-71 
504 |a Verhoeven, J.W., On the role of spin correlation in the formation, decay and detection of long-lived, intramolecular charge-transfer states (2006) J. Photochem. Photobiol., C, 7, pp. 40-60 
504 |a Braslavsky, S.E., Glossary of terms used in photochemistry, 3rd edition (2007) Pure Appl. Chem., 79, pp. 293-465 
504 |a Suppan, P., Vauthey, E., The energy balance of photoinduced electron transfer reactions (1989) J. Photochem. Photobiol., A, 49, pp. 239-248 
504 |a Miller, J.R., Peeples, J.A., Schmitt, M.J., Closs, G.L., Long-distance fluorescence quenching by electron transfer in rigid solutions (1982) J. Am. Chem. Soc., 104, pp. 6488-6493 
504 |a Miller, J.R., Calcaterra, L.T., Closs, G.L., Intramolecular long-distance electron transfer in radical anions. the effects of free energy and solvent on the reaction rates (1984) J. Am. Chem. Soc., 106, pp. 3047-3049 
504 |a Osuka, A., Noya, G., Taniguchi, S., Okada, T., Nishimura, Y., Yamazaki, I., Mataga, N., Energy-gap dependence of photoinduced charge separation and subsequent charge recombination in 1,4-phenylene-bridged zinc-free-base hybrid porphyrins (2000) Chem. Eur. J., 6, pp. 33-46 
504 |a DeGraziano, J.M., Liddell, P.A., Leggett, L., Moore, A.L., Moore, T.A., Gust, D., Free energy dependence of photoinduced charge separation rates in porphyrin dyads (1994) J. Phys. Chem., 98, pp. 1758-1761 
504 |a Krishtalik, L.I., The medium reorganization energy for the charge transfer reactions in proteins (2011) Biochim. Biophys. Acta, 1807, pp. 1444-1456 
504 |a Ohkubo, K., Imahori, H., Shao, J., Ou, Z., Kadish, K.M., Chen, Y., Zheng, G., Fukuzumi, S., Small reorganization energy of intramolecular electron transfer in fullerene-based dyads with short linkage (2002) J. Phys. Chem. A, 106, pp. 10991-10998 
504 |a Marcus, R.A., Electron transfer reactions in chemistry. Theory and experiment (1993) Rev. Mod. Phys., 65, pp. 599-610 
504 |a Warman, J.M., Smit, K.J., de Haas, M.P., Jonker, S.A., Paddon-Row, M.N., Oliver, A.M., Kroon, J., Verhoeven, J.W., Long-distance charge recombination within rigid molecular assemblies in nondipolar solvents (1991) J. Phys. Chem., 95, pp. 1979-1987 
504 |a Tran-Thi, T.H., Lipskier, J.F., Maillard, P., Momenteau, M., Lopez-Castillo, J.-M., Jay-Gerin, J.-P., Effect of the exciton coupling on the optical and photophysical properties of face-to-face porphyrin dimer and trimer. A treatment including the solvent stabilization effect (1992) J. Phys. Chem., 96, pp. 1073-1082 
504 |a Veldman, D., Chopin, S.M.A., Meskers, S.C.J., Groeneveld, M.M., Williams, R.M., Janssen, R.A.J., Triplet formation involving a polar transition state in a well-defined intramolecular perylenediimide dimeric aggregate (2008) J. Phys. Chem. A, 112, pp. 5846-5857 
504 |a Thomas, A.K., Brown, H.A., Datko, B.D., Garcia-Galvez, J.A., Grey, J.K., Interchain charge-transfer states mediate triplet formation in purified conjugated polymer aggregates (2016) J. Phys. Chem. C, 120, pp. 23230-23238 
504 |a Zhang, X.-F., Zhang, I., Liu, L., Photophysics of halogenated fluoresceins: Involvement of both intramolecular electron transfer and heavy atom effect in the deactivation of excited states (2010) Photochem. Photobiol., 86, pp. 492-498 
504 |a Fleming, G.R., Knight, A.W.E., Morris, J.M., Morrison, R.J.S., Robinson, G.W., Picosecond fluorescence studies of xanthene dyes (1977) J. Am. Chem. Soc., 99, pp. 4306-4311 
504 |a Malak, H., Investigating up-conversion fluorescence of Phloxine B (1999) IEEE Eng. Med. Biol., 99, pp. 37-91 
504 |a Linden, S.M., Neckers, D.C., Bleaching studies of rose bengal onium salts (1988) J. Am. Chem. Soc., 110, pp. 1257-1260 
504 |a Lee, S.H., Nam, D.H., Park, C.B., Screening xanthene dyes for visible light-driven nicotinamide adenine dinucleotide regeneration and photoenzymatic synthesis (2009) Adv. Synth. Catal., 351, pp. 2589-2594 
506 |2 openaire  |e Política editorial 
520 3 |a The photophysical behavior of two xanthene dyes, Eosin Y and Phloxine B, included in microcrystalline cellulose particles is studied in a wide concentration range, with emphasis on the effect of dye concentration on fluorescence and triplet quantum yields. Absolute fluorescence quantum yields in the solid-state were determined by means of diffuse reflectance and steady-state fluorescence measurements, whereas absolute triplet quantum yields were obtained by laser-induced optoacoustic spectroscopy and their dependence on dye concentration was confirmed by diffuse reflectance laser flash photolysis and time-resolved phosphorescence measurements. When both quantum yields are corrected for reabsorption and reemission of radiation, ΦF values decrease strongly on increasing dye concentration, while a less pronounced decay is observed for ΦT. Fluorescence concentration quenching is attributed to the formation of dye aggregates or virtual traps resulting from molecular crowding. Dimeric traps are however able to generate triplet states. A mechanism based on the intermediacy of charge-transfer states is proposed and discussed. Calculation of parameters for photoinduced electron transfer between dye molecules within the traps evidences the feasibility of the proposed mechanism. Results demonstrate that photoactive energy traps, capable of yielding dye triplet states, can be formed even in highly-concentrated systems with random dye distributions. © 2018 The American Society of Photobiology  |l eng 
536 |a Detalles de la financiación: Universidad Nacional de La Plata 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Universidad Nacional de La Plata 
536 |a Detalles de la financiación: Facultad de Ciencias Físicas y Matemáticas 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: National Council for Scientific Research 
536 |a Detalles de la financiación: Consejo Nacional de Rectores 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: 1Departamento de Qúımica Inorgánica, Analítica y Qúımica Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 2Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Universidad Nacional de La Plata (UNLP), La Plata, Argentina 3Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina 4Max Planck Institute for Chemical Energy Conversion, Mu€lheim an der Ruhr, Germany 
536 |a Detalles de la financiación: Acknowledgements—This work has been supported by the University of Buenos Aires, the National Research Council of Argentina (CONICET) and the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT). H. B. R. and E. S. R. are members of CONICET. Y. L. held a fellowship from the Consejo Interuniversitario Nacional (CIN). 
593 |a Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Universidad Nacional de La Plata (UNLP), La Plata, Argentina 
593 |a Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany 
593 |a Fritz Haber Institute of the Max Planck Society, Berlin, Germany 
700 1 |a Rodríguez, H.B. 
700 1 |a Braslavsky, Silvia Elsa 
700 1 |a San Román, E. 
773 0 |d Blackwell Publishing Inc., 2018  |g v. 94  |h pp. 865-874  |k n. 5  |p Photochem. Photobiol.  |x 00318655  |w (AR-BaUEN)CENRE-43  |t Photochemistry and Photobiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052431171&doi=10.1111%2fphp.12978&partnerID=40&md5=d21521d2b4c99dd890023c582ef47793  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/php.12978  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00318655_v94_n5_p865_Litman  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00318655_v94_n5_p865_Litman  |y Registro en la Biblioteca Digital 
961 |a paper_00318655_v94_n5_p865_Litman  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 86044