Structural color in the Swallow Tanager (Tersina viridis): Using the Korringa-Kohn-Rostoker method to simulate disorder in natural photonic crystals
The plumage of birds often exhibits attractive color effects produced by the interaction of light with the photonic microstructure present in the feather barbs and barbules. This microstructure constitutes a natural photonic crystal that rejects radiation of wavelengths contained within the band gap...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
American Physical Society
2018
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 10265caa a22009017a 4500 | ||
|---|---|---|---|
| 001 | PAPER-25070 | ||
| 003 | AR-BaUEN | ||
| 005 | 20251002123936.0 | ||
| 008 | 190410s2018 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-85053120989 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a D'Ambrosio, C. | |
| 245 | 1 | 0 | |a Structural color in the Swallow Tanager (Tersina viridis): Using the Korringa-Kohn-Rostoker method to simulate disorder in natural photonic crystals |
| 260 | |b American Physical Society |c 2018 | ||
| 270 | 1 | 0 | |m D'Ambrosio, C.; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de FísicaArgentina |
| 504 | |a Srinivasarao, M., Nano-optics in the biological world: Beetles, butterflies, birds, and moths (1999) Chem. Rev., 99, p. 1935 | ||
| 504 | |a Parker, A., 515 million years of structural color (2000) J. Opt. A, 2, p. R15 | ||
| 504 | |a Vukusic, P., Sambles, J.R., Photonic structures in biology (2003) Nature (London), 424, p. 852 | ||
| 504 | |a Kinoshita, S., (2008) Structural Colors in the Realm of Nature, , (World Scientific, Singapore) | ||
| 504 | |a Berthier, S., (2007) Iridescences, the Physical Colours of Insects, , (Springer Science+Business Media, LLC, France) | ||
| 504 | |a Prum, R., Torres, R., Williamson, S., Dyck, J., Coherent light scattering by blue feather barbs (1998) Nature (London), 396, p. 28 | ||
| 504 | |a Prum, R., Torres, R., Williamson, S., Dyck, J., Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs (1999) Proc. R. Soc. London, Ser. B, 266, p. 13 | ||
| 504 | |a Prum, R.O., Torres, R., Structural colouration of avian skin: Convergent evolution of coherently scattering dermal collagen arrays (2003) J. Exp. Biol., 206, p. 2409 | ||
| 504 | |a Yoshioka, S., Kinoshita, S., Effect of macroscopic structure in iridescent color of the peacock feathers (2002) Forma, 17, p. 169 | ||
| 504 | |a Li, Y., Lu, Z., Yin, H., Yu, X., Liu, X., Zi, J., Structural origin of the brown color of barbules in male peacock tail feathers (2005) Phys. Rev. e, 72, p. 010902. , (R) | ||
| 504 | |a Yin, H., Shi, L., Sha, J., Li, Y., Qin, Y., Dong, B., Meyer, S., Zi, J., Iridescence in the neck feathers of domestic pigeons (2006) Phys. Rev. e, 74, p. 051916 | ||
| 504 | |a Prum, R.O., Dufresne, E.R., Quinn, T., Waters, K., Development of color-producing (Equation presented)-keratin nanostructures in avian feather barbs (2009) J. R. Soc. Interf., 6, p. S253 | ||
| 504 | |a Saranathan, V., Forster, J., Noh, H., Liew, S., Mochrie, S., Cao, H., Dufresne, E., Prum, R., Structure and optical function of amorphous photonic nanostructures from avian feather barbs: A comparative small angle X-ray scattering (SAXS) analysis of 230 bird species (2012) J. R. Soc. Interf., 9, p. 2563 | ||
| 504 | |a Igic, B., D'Alba, L., Shawkey, M., Manakins can produce iridescent and bright feather colours without melanosomes (2016) J. Exp. Biol., 219, p. 1851 | ||
| 504 | |a D'Ambrosio, C., Inchaussandague, M., Skigin, D., Barreira, A., Tubaro, P., Structural color in Tersina viridis (2017) Opt. Pura Apl., 50, p. 279 | ||
| 504 | |a Noh, H., Liew, S.F., Saranathan, V., Prum, R.O., Mochrie, S.G.J., Dufresne, E.R., Cao, H., Contribution of double scattering to structural coloration in quasiordered nanostructures of bird feathers (2010) Phys. Rev. e, 81, p. 051923 | ||
| 504 | |a Eliason, C.M., Bitton, P.P., Shawkey, M.D., How hollow melanosomes affect iridescent color production in birds (2013) Proc. R. Soc. London, Ser. B, 280, p. 1505 | ||
| 504 | |a Stefanou, N., Yannopapas, V., Modinos, A., Heterostructures of photonic crystals: Frequency bands and transmission coefficients (1998) Comput. Phys. Commun., 113, p. 49 | ||
| 504 | |a Yannopapas, V., Modinos, A., Stefanou, N., Optical properties of metallodielectric photonic crystals (1999) Phys. Rev. B, 60, p. 5359 | ||
| 504 | |a Stefanou, N., Yannopapas, V., Modinos, A., Multem 2: A new version of the program for transmission and bandstructure calculations of photonic crystals (2000) Comput. Phys. Commun., 132, p. 189 | ||
| 504 | |a Dorado, L.A., Depine, R.A., Míguez, H., Effect of extinction on the high-energy optical response of photonic crystals (2007) Phys. Rev. B, 75, p. 241101. , (R) | ||
| 504 | |a Dorado, L.A., Depine, R.A., Lozano, G., Míguez, H., Physical origin of the high energy optical response of three dimensional photonic crystals (2007) Opt. Express, 15, p. 17754 | ||
| 504 | |a Dorado, L.A., Depine, R.A., Schinca, D., Lozano, G., Míguez, H., Experimental and theoretical analysis of the intensity of beams diffracted by three-dimensional photonic crystals (2008) Phys. Rev. B, 78, p. 075102 | ||
| 504 | |a Lozano, G., Míguez, H., Dorado, L., Depine, R., (2012) Optical Properties of Photonic Structures: Interplay of Order and Disorder, , Modeling the optical response of three-dimensional disorder structures using the Korringa-Kohn-Rostoker method, in, edited by M. F. Limonov and R. M. De La Rue (CRC, Boca Raton, FL), Chap. 2.3 | ||
| 504 | |a Barreira, A., (2011), Evolución de los patrones de coloración del plumaje en fruteros neotropicales, Ph.D.Thesis, UBA; Barreira, A., García, N., Lougheed, S., Tubaro, P., Viewing geometry affects sexual dichromatism and conspicuousness of noniridescent plumage of Swallow Tanagers (Tersina viridis) (2016) The Auk, 133, p. 530 | ||
| 504 | |a Stavenga, D.G., Leertouwer, H.L., Osorio, D.C., Wilts, B., High refractive index of melanin in shiny occipital feathers of a bird of paradise (2015) Light: Sci. Appl., 4, p. e243 | ||
| 504 | |a Stavenga, D.G., Leertouwer, H.L., Justin Marshall, N., Osorio, D., Dramatic color changes in a bird of paradise caused by uniquely structured breast feather barbules (2011) Proc. R. Soc. London, Ser. B, 278, p. 2098 | ||
| 504 | |a Noh, H., Liew, S.F., Saranathan, V., Mochrie, S.G.J., Prum, R.O., Dufresne, E.R., Cao, H., How noniridescent colors are generated by quasi-ordered structures of birds feathers (2010) Adv. Mater., 22, p. 2871 | ||
| 506 | |2 openaire |e Política editorial | ||
| 520 | 3 | |a The plumage of birds often exhibits attractive color effects produced by the interaction of light with the photonic microstructure present in the feather barbs and barbules. This microstructure constitutes a natural photonic crystal that rejects radiation of wavelengths contained within the band gap, which significantly alters the observed coloration depending on the incidence conditions. In spite of the high degree of regularity exhibited by the barb's microstructure of many species, the disorder present in these natural photonic crystals might modify the reflected response. In this paper, we address the problem of modeling the electromagnetic response of a quasiordered photonic structure, using an electromagnetic method only suitable for strictly periodic structures. In particular, we simulate the reflected response of the plumage of the Swallow Tanager (Tersina viridis) by two different approaches. On the one hand, we compute the reflected response by averaging reflectance spectra calculated by the Korringa-Kohn-Rostoker method for different geometrical parameters. We also apply the inner extinction approximation, which represents imperfections in the structure by adding a small imaginary part to the dielectric constant of the inclusions. The agreement between the experimental and the simulated results evidences the potential of the proposed methods to reproduce the electromagnetic response of natural photonic structures. © 2018 American Physical Society. |l eng | |
| 536 | |a Detalles de la financiación: PIP 112-201501-00637CO | ||
| 536 | |a Detalles de la financiación: Universidad de Buenos Aires, UBACyT 20020150100028BA | ||
| 536 | |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas | ||
| 536 | |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2015-3560, PICT 2014-2154 | ||
| 536 | |a Detalles de la financiación: PIP 112-201101-00451 | ||
| 536 | |a Detalles de la financiación: D.S. and M.I. acknowledge partial support from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET PIP 112-201101-00451) and Universidad de Buenos Aires (UBACyT 20020150100028BA). A.B. and P.T. acknowledge partial support from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET PIP 112-201501-00637CO) and from Agencia Nacional de Promoción de Científica y Tecnológica PICT 2014-2154 and PICT 2015-3560. | ||
| 593 | |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina | ||
| 593 | |a División de Ornitología, Museo Argentino de Ciencias Naturales bernardino Rivadavia MACN-CONICET, Av. Ángel Gallardo 470 (C1405DJR), Buenos Aires, Argentina | ||
| 690 | 1 | 0 | |a ENERGY GAP |
| 690 | 1 | 0 | |a GEOMETRY |
| 690 | 1 | 0 | |a PHOTONIC BAND GAP |
| 690 | 1 | 0 | |a PHOTONIC CRYSTALS |
| 690 | 1 | 0 | |a ELECTROMAGNETIC METHODS |
| 690 | 1 | 0 | |a ELECTROMAGNETIC RESPONSE |
| 690 | 1 | 0 | |a KORRINGA-KOHN-ROSTOKER METHOD |
| 690 | 1 | 0 | |a NATURAL PHOTONIC CRYSTALS |
| 690 | 1 | 0 | |a PHOTONIC STRUCTURE |
| 690 | 1 | 0 | |a REFLECTANCE SPECTRUM |
| 690 | 1 | 0 | |a SIMULATED RESULTS |
| 690 | 1 | 0 | |a STRUCTURAL COLOR |
| 690 | 1 | 0 | |a CRYSTAL MICROSTRUCTURE |
| 700 | 1 | |a Skigin, D.C. | |
| 700 | 1 | |a Inchaussandague, M.E. | |
| 700 | 1 | |a Barreira, A. | |
| 700 | 1 | |a Tubaro, Pablo Luis | |
| 773 | 0 | |d American Physical Society, 2018 |g v. 98 |k n. 3 |p Phys. Rev. E |x 24700045 |t Physical Review E | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053120989&doi=10.1103%2fPhysRevE.98.032403&partnerID=40&md5=44de9e7d57f93897d0ffc7f94d098448 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1103/PhysRevE.98.032403 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_24700045_v98_n3_p_DAmbrosio |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24700045_v98_n3_p_DAmbrosio |y Registro en la Biblioteca Digital |
| 961 | |a paper_24700045_v98_n3_p_DAmbrosio |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 86023 | ||