One-Dimensional Confinement Inhibits Water Dissociation in Carbon Nanotubes

The effect of nanoconfinement on the self-dissociation of water constitutes an open problem whose elucidation poses a serious challenge to experiments and simulations alike. In slit pores of width ?1 nm, recent first-principles calculations have predicted that the dissociation constant of H2O increa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Sirkin, Y.A.P
Otros Autores: Hassanali, A., Scherlis, D.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09880caa a22009377a 4500
001 PAPER-25069
003 AR-BaUEN
005 20230518205702.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85052321808 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Sirkin, Y.A.P. 
245 1 0 |a One-Dimensional Confinement Inhibits Water Dissociation in Carbon Nanotubes 
260 |b American Chemical Society  |c 2018 
270 1 0 |m Hassanali, A.; Condensed Matter and Statistical Physics, International Centre for Theoretical PhysicsItaly; email: ahassana@ictp.it 
506 |2 openaire  |e Política editorial 
504 |a (2017) Phys. Rev. Lett., 119, p. 056002. , Muñoz-Santiburcio and Marx 
504 |a Hummer, G., Rasaiah, J.C., Noworyta, J.P., Water conduction through the hydrophobic channel of a carbon nanotube (2001) Nature, 414, p. 188 
504 |a Dellago, C., Naor, M.M., Hummer, G., Proton Transport through Water-Filled Carbon Nanotubes (2003) Phys. Rev. Lett., 90, p. 105902 
504 |a Mann, D.J., Halls, M.D., Water Alignment and Proton Conduction inside Carbon Nanotubes (2003) Phys. Rev. Lett., 90, p. 195503 
504 |a Mashl, R.J., Joseph, S., Aluru, N.R., Jakobsson, E., Anomalously Immobilized Water: A New Water Phase Induced by Confinement in Nanotubes (2003) Nano Lett., 3, pp. 589-592 
504 |a Maniwa, Y., Matsuda, K., Kyakuno, H., Ogasawara, S., Hibi, T., Kadowaki, H., Suzuki, S., Kataura, H., Water-filled single-wall carbon nanotubes as molecular nanovalves (2007) Nat. Mater., 6, p. 135 
504 |a Takaiwa, D., Hatano, I., Koga, K., Tanaka, H., Phase diagram of water in carbon nanotubes (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 39-43 
504 |a Wang, L., Zhao, J., Li, F., Fang, H., Lu, J.P., First-Principles Study of Water Chains Encapsulated in Single-Walled Carbon Nanotube (2009) J. Phys. Chem. C, 113, pp. 5368-5375 
504 |a Mikami, F., Matsuda, K., Kataura, H., Maniwa, Y., Dielectric Properties of Water inside Single-Walled Carbon Nanotubes (2009) ACS Nano, 3, pp. 1279-1287 
504 |a Zuo, G., Shen, R., Guo, W., Self-Adjusted Sustaining Oscillation of Confined Water Chain in Carbon Nanotubes (2011) Nano Lett., 11, pp. 5297-5300 
504 |a Cao, Z., Peng, Y., Yan, T., Li, S., Li, A., Voth, G.A., Mechanism of Fast Proton Transport along One-Dimensional Water Chains Confined in Carbon Nanotubes (2010) J. Am. Chem. Soc., 132, pp. 11395-11397 
504 |a Lee, S.H., Rasaiah, J.C., Proton transfer and the diffusion of H+ and OH ions along water wires (2013) J. Chem. Phys., 139, p. 124507 
504 |a Chen, J., Li, X.-Z., Zhang, Q., Michaelides, A., Wang, E., Nature of proton transport in a water-filled carbon nanotube and in liquid water (2013) Phys. Chem. Chem. Phys., 15, pp. 6344-6349 
504 |a Li, S., Schmidt, B., Molecular dynamics simulations of proton-ordered water confined in low-diameter carbon nanotubes (2015) Phys. Chem. Chem. Phys., 17, pp. 7303-7316 
504 |a Rossi, M., Ceriotti, M., Manolopoulos, D.E., Nuclear Quantum Effects in H+ and OH Diffusion along Confined Water Wires (2016) J. Phys. Chem. Lett., 7, pp. 3001-3007 
504 |a Chen, Q., Wang, Q., Liu, Y.-C., Wu, T., The effect of hydrogen bonds on diffusion mechanism of water inside single-walled carbon nanotubes (2014) J. Chem. Phys., 140, p. 214507 
504 |a Agrawal, K.V., Shimizu, S., Drahushuk, L.W., Kilcoyne, D., Strano, M.S., Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes (2017) Nat. Nanotechnol., 12, p. 267 
504 |a Renou, R., Szymczyk, A., Maurin, G., Malfreyt, P., Ghoufi, A., Superpermittivity of nanoconfined water (2015) J. Chem. Phys., 142, p. 184706 
504 |a Schaaf, C., Gekle, S., Spatially resolved dielectric constant of confined water and its connection to the non-local nature of bulk water (2016) J. Chem. Phys., 145, p. 084901 
504 |a Agmon, N., The Grotthuss mechanism (1995) Chem. Phys. Lett., 244, pp. 456-462 
504 |a Marx, D., Chandra, A., Tuckerman, M.E., Aqueous Basic Solutions: Hydroxide Solvation, Structural Diffusion, and Comparison to the Hydrated Proton (2010) Chem. Rev., 110, pp. 2174-2216 
504 |a Knight, C., Voth, G.A., The Curious Case of the Hydrated Proton (2012) Acc. Chem. Res., 45, pp. 101-109 
504 |a Hassanali, A., Giberti, F., Cuny, J., Kühne, T.D., Parrinello, M., Proton transfer through the water gossamer (2013) Proc. Natl. Acad. Sci. U. S. A., 110, p. 13723 
504 |a Muñoz-Santiburcio, D., Marx, D., Nanoconfinement in Slit Pores Enhances Water Self-Dissociation (2017) Phys. Rev. Lett., 119, p. 056002 
504 |a Agmon, N., Bakker, H.J., Campen, R.K., Henchman, R.H., Pohl, P., Roke, S., Thämer, M., Hassanali, A., Protons and Hydroxide Ions in Aqueous Systems (2016) Chem. Rev., 116, pp. 7642-7672 
504 |a Sprik, M., Computation of the pK of liquid water using coordination constraints (2000) Chem. Phys., 258, pp. 139-150 
504 |a Hunt, D., Sanchez, V.M., Scherlis, D.A., A quantum-mechanics molecular-mechanics scheme for extended systems (2016) J. Phys.: Condens. Matter, 28, p. 335201 
504 |a Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Dabo, I., QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials (2009) J. Phys.: Condens. Matter, 21, p. 395502 
504 |a Munoz-Santiburcio, D., Marx, D., Chemistry in nanoconfined water (2017) Chem. Sci., 8, pp. 3444-3452 
504 |a Tuckerman, M., Laasonen, K., Sprik, M., Parrinello, M., Ab Initio Molecular Dynamics Simulation of the Solvation and Transport of H3O+ and OH- Ions in Water (1995) J. Phys. Chem., 99, pp. 5749-5752 
504 |a Tuckerman, M., Laasonen, K., Sprik, M., Parrinello, M., Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water (1995) J. Chem. Phys., 103, pp. 150-161 
504 |a Markovitch, O., Chen, H., Izvekov, S., Paesani, F., Voth, G.A., Agmon, N., Special Pair Dance and Partner Selection: Elementary Steps in Proton Transport in Liquid Water (2008) J. Phys. Chem. B, 112, pp. 9456-9466 
504 |a Baer, M.D., Kuo, I.-F.W., Tobias, D.J., Mundy, C.J., Toward a Unified Picture of the Water Self-Ions at the AirWater Interface: A Density Functional Theory Perspective (2014) J. Phys. Chem. B, 118, pp. 8364-8372 
504 |a Crespo, Y., Hassanali, A., Unveiling the Janus-Like Properties of OH (2015) J. Phys. Chem. Lett., 6, pp. 272-278 
504 |a Egan, C.K., Paesani, F., Assessing Many-Body Effects of Water Self-Ions. I: OH(H2O)n Clusters (2018) J. Chem. Theory Comput., 14, pp. 1982-1997 
504 |a Fumagalli, L., Esfandiar, A., Fabregas, R., Hu, S., Ares, A., Janardanan, Q., Yang, Q., Geim, A.K., (2018) Science, 360, pp. 1339-1342 
520 3 |a The effect of nanoconfinement on the self-dissociation of water constitutes an open problem whose elucidation poses a serious challenge to experiments and simulations alike. In slit pores of width ?1 nm, recent first-principles calculations have predicted that the dissociation constant of H2O increases by almost 2 orders of magnitude [ Muñoz-Santiburcio and Marx, Phys. Rev. Lett. 2017, 119, 056002 ]. In the present study, quantum mechanics?molecular mechanics simulations are employed to compute the dissociation free-energy profile of water in a (6,6) carbon nanotube. According to our results, the equilibrium constant Kw drops by 3 orders of magnitude with respect to the bulk phase value, at variance with the trend predicted for confinement in two dimensions. The higher barrier to dissociation can be ascribed to the undercoordination of the hydroxide and hydronium ions in the nanotube and underscores that chemical reactivity does not exhibit a monotonic behavior with respect to pore size but may vary substantially with the characteristic length scale and dimensionality of the confining media. © 2018 American Chemical Society.  |l eng 
593 |a Departamento de Quimica Inorganica, Analitica y Quimica Fisica/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina 
593 |a Condensed Matter and Statistical Physics, International Centre for Theoretical Physics, Trieste, I-34151, Italy 
690 1 0 |a CALCULATIONS 
690 1 0 |a CARBON NANOTUBES 
690 1 0 |a EQUILIBRIUM CONSTANTS 
690 1 0 |a FREE ENERGY 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a PORE SIZE 
690 1 0 |a YARN 
690 1 0 |a BIASED SAMPLING 
690 1 0 |a CHARACTERISTIC LENGTH 
690 1 0 |a DISSOCIATION CONSTANT 
690 1 0 |a FIRST-PRINCIPLES CALCULATION 
690 1 0 |a HYDRONIUM IONS 
690 1 0 |a NANOCONFINEMENTS 
690 1 0 |a ORDERS OF MAGNITUDE 
690 1 0 |a WATER DISSOCIATION 
690 1 0 |a DISSOCIATION 
700 1 |a Hassanali, A. 
700 1 |a Scherlis, D.A. 
773 0 |d American Chemical Society, 2018  |g v. 9  |h pp. 5029-5033  |k n. 17  |p J. Phys. Chem. Lett.  |x 19487185  |w (AR-BaUEN)CENRE-4167  |t Journal of Physical Chemistry Letters 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052321808&doi=10.1021%2facs.jpclett.8b02183&partnerID=40&md5=42440b58ce173d974b27ec621ef5e942  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/acs.jpclett.8b02183  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19487185_v9_n17_p5029_Sirkin  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19487185_v9_n17_p5029_Sirkin  |y Registro en la Biblioteca Digital 
961 |a paper_19487185_v9_n17_p5029_Sirkin  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86022