Models for the propensity score that contemplate the positivity assumption and their application to missing data and causality

Generalized linear models are often assumed to fit propensity scores, which are used to compute inverse probability weighted (IPW) estimators. To derive the asymptotic properties of IPW estimators, the propensity score is supposed to be bounded away from zero. This condition is known in the literatu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Molina, J.
Otros Autores: Sued, M., Valdora, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: John Wiley and Sons Ltd 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08965caa a22008777a 4500
001 PAPER-25015
003 AR-BaUEN
005 20230518205658.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85054291616 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a SMEDD 
100 1 |a Molina, J. 
245 1 0 |a Models for the propensity score that contemplate the positivity assumption and their application to missing data and causality 
260 |b John Wiley and Sons Ltd  |c 2018 
270 1 0 |m Valdora, M.; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de CálculoArgentina; email: mvaldora@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Robins, J.M., Rotnitzky, A., Zhao, L.P., Estimation of regression coefficients when some regressors are not always observed (1994) J Am Stat Assoc, 89 (427), pp. 846-866 
504 |a Robins, J.M., Rotnitzky, A., Zhao, L.P., Analysis of semiparametric regression models for repeated outcomes in the presence of missing data (1995) J Am Stat Assoc, 90 (429), pp. 106-121 
504 |a Little, R., An, H., Robust likelihood-based analysis of multivariate data with missing values (2004) Stat Sin, 14, pp. 949-968 
504 |a Kang, J.D., Schafer, J., Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data (2007) Stat Sci, 22, pp. 523-539 
504 |a Rosenbaum, P., Propensity score (1998) Encyclopedia of Biostatistics, 5, pp. 3551-3555. , Armitage P, Colton T, eds., New York, Wiley New York 
504 |a Hirano, K., Imbens, G.W., Ridder, G., Efficient estimation of average treatment effects using the estimated propensity score (2003) Econometrica, 71 (4), pp. 1161-1189 
504 |a Lunceford, J.K., Davidian, M., Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study (2004) Stat Med, 23 (19), pp. 2937-2960 
504 |a Crump, R.K., Hotz, V.J., Imbens, G.W., Mitnik, O.A., Dealing with limited overlap in estimation of average treatment effects (2009) Biometrika, 96 (1), pp. 187-199 
504 |a Little, R.J., Rubin, D.B., (1987) Statistical analysis with missing data john wiley and sons 
504 |a Cole, S.R., Hernan, M.A., Constructing inverse probability weights for marginal structural models (2008) Am J Epidemiol, 168 (6), pp. 656-664 
504 |a Ritz, C., Baty, F., Streibig, J.C., Gerhard, D., Dose-response analysis using R (2015) PLos one, 10 (12). , Dec 30; 
504 |a Tager, I.B., Weiss, A., Rosner, B., Speizer, F.E., Effect of parental cigarette smoking on the pulmonary function of children (1979) Am J Epidemiol, 110 (1), pp. 15-26 
504 |a Tager, I.B., Weiss, S.T., Muñoz, A., Rosner, B., Speizer, F.E., Longitudinal study of the effects of maternal smoking on pulmonary function in children (1983) N Engl J Med, 309 (12), pp. 699-703 
504 |a Rosner, B., (1999) Fundamentals of Biostatistics, , 5th ed, CA, Duxbury, Pacific Grove 
504 |a Kahn, M., An exhalent problem for teaching statistics (2005) J Stat Educ, 13 (2) 
504 |a Lee, B.K., Lessler, J., Stuart, E.A., Improving propensity score weighting using machine learning (2010) Stat Med, 29 (3), pp. 337-346 
504 |a Kang, J., Chan, W., Kim, M.O., Steiner, P.M., Practice of causal inference with the propensity of being zero or one: assessing the effect of arbitrary cutoffs of propensity scores (2016) Commun Stat Appl Methods, 23 (1), pp. 1-20 
504 |a Rubin, D.B., Inference and missing data (1976) Biometrika, 63 (3), pp. 581-592 
504 |a Rosenbaum, P.R., Rubin, D.B., The central role of the propensity score in observational studies for causal effects (1983) Biometrika, 70 (1), pp. 41-55 
504 |a Horvitz, D.G., Thompson, D.J., A generalization of sampling without replacement from a finite universe (1952) J Am Stat Assoc, 47 (260), pp. 663-685 
504 |a Robins, J.M., Rotnitzky, A., Recovery of information and adjustment for dependent censoring using surrogate markers (1992) Aids Epidemiology, pp. 297-331. , Jewell N, Dietz K, Farewell VT, eds., Birkhäuser, Boston, Springer 
504 |a McCullagh, P., Nelder, J., (1989) Generalized Linear CRC Monograph on Statistics and Applied Probability, , New York, Springer Verlag 
504 |a Valdora, M., Yohai, V.J., Robust estimators for generalized linear models (2014) J Stat Plan Infer, 146, pp. 31-48 
504 |a Van der Vaart, A.W., (1998) Asymptotic statistics, , Vol 3. Cambridge University Press; 
504 |a Neyman, J., Sur les applications de la theorie des probabilits˜ aux experiences agricoles (1923) Essai des principes Roczniki Nauk Rolniczych, 10, pp. 1-51 
504 |a Rubin, D.B., Estimating causal effects of treatments in randomized and nonrandomized studies (1974) J Educ Psychol, 66 (5), p. 688 
504 |a Cole, S.R., Frangakis, C.E., The consistency statement in causal inference: a definition or an assumption? (2009) Epidemiology, 20 (1), pp. 3-5 
504 |a Stefanski, L.A., Boos, D.D., The calculus of M-estimation (2002) Am Stat, 56 (1), pp. 29-38 
504 |a Yao, L., Sun, Z., Wang, Q., Estimation of average treatment effects based on parametric propensity score model (2010) J Stat Plan Inference, 140 (3), pp. 806-816 
504 |a Hahn, J., On the role of the propensity score in efficient semiparametric estimation of average treatment effects (1998) Econometrica, pp. 315-331 
504 |a Wasserman, L., (2013) All of Statistics: a Concise Course in Statistical Inference, , New York, Springer Science and Business Media 
504 |a Marazzi, A., Yohai, V.J., Adaptively truncated maximum likelihood regression with asymmetric errors (2004) J Stat Plan Inference, 122 (1), pp. 271-291 
504 |a Niu, X., Hoff, P., (2014) Covreg: a simultaneous regression model for the mean and covariance R package version 
504 |a Friedman, J., Hastie, T., Tibshirani, R., Regularization paths for generalized linear models via coordinate descent (2010) J Stat Softw, 33 (1), p. 1 
520 3 |a Generalized linear models are often assumed to fit propensity scores, which are used to compute inverse probability weighted (IPW) estimators. To derive the asymptotic properties of IPW estimators, the propensity score is supposed to be bounded away from zero. This condition is known in the literature as strict positivity (or positivity assumption), and, in practice, when it does not hold, IPW estimators are very unstable and have a large variability. Although strict positivity is often assumed, it is not upheld when some of the covariates are unbounded. In real data sets, a data-generating process that violates the positivity assumption may lead to wrong inference because of the inaccuracy in the estimations. In this work, we attempt to conciliate between the strict positivity condition and the theory of generalized linear models by incorporating an extra parameter, which results in an explicit lower bound for the propensity score. An additional parameter is added to fulfil the overlap assumption in the causal framework. Copyright © 2018 John Wiley & Sons, Ltd.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: This research was partly supported by grants 20020150200110BA and 20020130100279BA from Universidad de Buenos Aires. 
593 |a Universidad de Buenos Aires, Ciclo Básico Común, Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, Buenos Aires, Argentina 
690 1 0 |a AVERAGE TREATMENT EFFECT 
690 1 0 |a INVERSE PROBABILITY WEIGHTING 
690 1 0 |a MISSING DATA 
690 1 0 |a OBSERVATIONAL STUDIES 
690 1 0 |a POSITIVITY 
690 1 0 |a ARTICLE 
690 1 0 |a OBSERVATIONAL STUDY 
690 1 0 |a PROBABILITY 
690 1 0 |a PROPENSITY SCORE 
690 1 0 |a THEORETICAL STUDY 
700 1 |a Sued, M. 
700 1 |a Valdora, M. 
773 0 |d John Wiley and Sons Ltd, 2018  |g v. 37  |h pp. 3503-3518  |k n. 24  |p Stat. Med.  |x 02776715  |t Statistics in Medicine 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054291616&doi=10.1002%2fsim.7827&partnerID=40&md5=a6da9595b20a59f20bac9caccbd19f22  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/sim.7827  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_02776715_v37_n24_p3503_Molina  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02776715_v37_n24_p3503_Molina  |y Registro en la Biblioteca Digital 
961 |a paper_02776715_v37_n24_p3503_Molina  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion