Distribution and isotopic signature of deep gases in submerged soils in an island of the Lower Delta of the Paraná River, Argentina

Subsoil CH4 and CO2 concentrations, δ13C-CH4 and δ13C-CO2 signatures, total organic carbon (TOC) and δ13C-TOC, together with C/N ratio of organic matter, were evaluated throughout a soil profile up to the atmosphere to understand the dynamics of CH4 and CO2 in the waterlogged environment of an islan...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Sanci, R.
Otros Autores: Panarello, H.O
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer International Publishing 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 17895caa a22013217a 4500
001 PAPER-24983
003 AR-BaUEN
005 20230518205656.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85055079632 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a EMASD 
100 1 |a Sanci, R. 
245 1 0 |a Distribution and isotopic signature of deep gases in submerged soils in an island of the Lower Delta of the Paraná River, Argentina 
260 |b Springer International Publishing  |c 2018 
270 1 0 |m Sanci, R.; Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA), Intendente Güiraldes 2160, Pabellón II, Piso 1, Argentina; email: rominasanci@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Aravena, R., Warner, B.G., Charman, D.J., Belyea, L.R., Mathur, S.P., Dinel, H., Carbon isotopic composition of deep carbon gases in an ombrogeneous peatland, northwestern Ontario, Canada (1993) Radiocarbon, 35, pp. 271-276 
504 |a Badeck, F.W., Tcherkez, G., Nogués, S., Piel, C., Ghashghaie, J., Post-photosynthetic fractionation of stable carbon isotopes between plant organs—a widespread phenomenon (2005) Rapid Communications in Mass Spectrometry, 19, pp. 1381-1391 
504 |a Baird, A.J., Beckwith, C.W., Waldron, S., Waddington, J.M., Ebullition of methanecontaining gas bubbles from near surface Sphagnum peat (2004) Geophysical Research Letters, 31, p. L21505 
504 |a Beckwith, C.W., Baird, A.J., Effect of biogenic gas bubbles on water flow through poorly decomposed blanket peat (2001) Water Resources Research, 37 (3), pp. 551-558 
504 |a Bergamaschi, P., Seasonal Variation of Stable Hydrogen and Carbon Isotope Ratios in Methane from a Chinese Rice Paddy (1997) Journal of Geophysical Research, 102 (D21), pp. 25,383-25,393 
504 |a Bernard, B.B., Brooks, J.M., Sackett, W.M., Light hydrocarbons in recent Texas continental shelf and slope sediments (1978) Journal of Geophysical Research, 83, p. 4053 
504 |a Biscaye, P., Mineralogy and Sedimentation of Recent Deep-Sea Clay in the Atlantic Ocean and Adjacent Seas and Oceans (1965) Geological Society of America Bulletin, 76 (7), p. 803. , COI: 1:CAS:528:DyaF2MXkvFKrtb4%3D 
504 |a Bridgham, S.D., Cadillo-Quiroz, H., Keller, J.K., Zhuang, Q., Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales (2013) Global Change Biology, 19, pp. 1325-1346 
504 |a Chanton, J.P., The Effect of Gas Transport on the Isotope Signature of Methane in Wetlands (2005) Organic Geochemistry, 36, pp. 753-768 
504 |a Chanton, J.P., Martens, C.S., Kelley, C.A., Gas transport from methane-saturated tidal fresh-water and wetland sediments (1989) Limnology and Oceanography, 34, pp. 807-819 
504 |a (2015) Groundwater geochemistry and isotopes, , CRC Press, Boca Raton, Florida 
504 |a Coleman, D.D., Risatti, J.B., Schoell, M., Fractionation of Carbon and Hydrogen Isotopes by Methane-Oxidizing Bacteria (1981) Geochimica et Cosmochimica Acta, 45, pp. 1033-1037 
504 |a Coleman, D.D., Liu, C.L., Hackley, K.C., Benson, L.J., Identification of Landfill Methane Using Carbon and Hydrogen Isotope Analysis (1993) Proceedings of 16Th International Madison Waste Conference, Municipal & Industrial Waste, pp. 303-314. , Madison: Department of Engineering Professional Development, University of Wisconsin, 22-23 September 
504 |a Comas, X., Slater, L., Reeve, A., Spatial Variability in Biogenic Gas Accumulations in Peat Soils Is Revealed by Ground Penetrating Radar (GPR) (2005) Geophysical Research Letters, 32 
504 |a Comas, X., Kettridge, N., Binley, A., Slater, L., Parsekian, A., Baird, A.J., Strack, M., Waddington, J.M., The effect of peat structure on the spatial distribution of biogenic gases within bogs (2014) Hydrological Processes, 28, pp. 5483-5494 
504 |a Conrad, R., Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal (2005) Organic Geochemistry, 36, pp. 739-752 
504 |a Coplen, T.B., Brand, W.A., Gehre, M., Gröning, M., Meijer, H.A.J., Toman, B., Verkouteren, R.M., New guidelines for δ13C measurements (2006) Analytical Chemistry, 78, pp. 2439-2441 
504 |a Coulthard, T.J., Baird, A.J., Ramirez, J., Waddington, J.M., Methane dynamics in peat: importance of shallow peats and a novel reduced-complexity approach for modeling ebullition (2009) Carbon cycling in northern peatlands, pp. 173-185. , Baird AJ, Belyea LR, Comas X, Reeve AS, Slater LD, (eds), American Geophysical Union, Washington DC 
504 |a Couwenberg, J., Dommain, R., Joosten, H., Greenhouse gas fluxes from tropical peatlands in south-east Asia (2010) Global Change Biology, 16, pp. 1715-1732 
504 |a De Visscher, A., De Pourcq, I., Chanton, J., Isotope Fractionation Effects by Diffusion and Methane Oxidation in Landfill Cover Soils (2004) Journal of Geophysical Research, 109 
504 |a Dorodnikov, M., Marushchak, M., Biasi, C., Wilmking, M., Effect of microtopography on isotopic composition of methane in porewater and efflux at a boreal peatland (2013) Boreal Environment Research, 18, pp. 269-279. , COI: 1:CAS:528:DC%2BC3sXht1KhtL3L 
504 |a (2001) Wetlands Classification and Types, , http://water.epa.gov/type/wetlands/types_index.cfm, Resource document. Environmental Protection Agency of United States, Office of Water EPA 843-F-01-002b, Oceans and Watersheds (4502T) 
504 |a Gal’chenko, V.F., Lein, A., Ivanov, M.V., Methane content in the bottom sediments and water column of the Black Sea (2004) Microbiology, 73 (2), pp. 211-223 
504 |a Garnett, M.H., Hardie, S.M.L., Murray, C., Radiocarbon and stable carbon analysis of dissolved methane and carbon dioxide from the profile of a raised peat bog (2011) Radiocarbon, 53, pp. 71-83 
504 |a Glaser, P.H., Chanton, J.P., Morin, P., Rosenberry, D.O., Siegel, D.I., Ruud, O., Chasar, L.I., Reeve, A.S., Surface Deformations as Indicators of Deep Ebullition Fluxes in a Large Northern Peatland (2004) Global Biogeochemical Cycles, 18, p. GB1003 
504 |a Hackley, K.C., Coleman, D.D., Liu, C.L., Environmental isotope characteristics of landfill leachates and gases (1996) Groundwater, 34, pp. 827-836 
504 |a Hackley, K.C., Liua, C.L., Trainorb, D., Isotopic identification of the source of methane in subsurface sediments of an area surrounded by waste disposal facilities (1999) Applied Geochemistry, 14, pp. 119-131 
504 |a Hapell, J.D., Chanton, J.P., Showers, W.J., Methane transfer across the water-air interface in stagnant wooded swamps of Florida: evaluation of mass transfer coefficients and isotopic fractionation (1995) Limnology and Oceanography, 40, pp. 290-298 
504 |a Hornibrook, E.R.C., Longstaffe, W.S., Fyfe, W.S., Spatial distribution of microbial methane production pathways in temperate zone wetland soils: stable carbon and hydrogen isotope evidence (1997) Geochimica et Cosmochimica Acta, 61, pp. 745-753. , COI: 1:CAS:528:DyaK2sXhvVOqtLg%3D 
504 |a Hornibrook, E.R.C., Longstaffe, F.J., Fyfe, W.S., Evolution of stable carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments (2000) Geochimica et Cosmochimica Acta, 64, pp. 1013-1027. , COI: 1:CAS:528:DC%2BD3cXhs1yku7Y%3D 
504 |a (1990) Atlas de Suelos de la República Argentina, , Instituto de Suelos-INTA, Bue Aires 
504 |a Kandus, P., Quintana, R.D., Bó, R.F., (2006) Patrones de Paisaje y Biodiversidad del Bajo Delta del Río Paraná. Mapa de Ambientes, , Pablo Casamajor, Bue Aires 
504 |a Kayranli, B., Scholz, M., Mustafa, A., Hedmark, A., Carbon storage and fluxes within freshwater wetlands: a critical review (2010) Wetlands, 30, pp. 111-124 
504 |a Khalil, M., Atmospheric methane: an introduction (2000) Atmospheric methane. Its role in the global environment, pp. 1-8. , Khalil MAK, (ed), Springer, New York 
504 |a Khan, N.S., Vane, C.H., Horton, B.P., Stable carbon isotope and C/N geochemistry of coastal wetland sediments as sea-level indicator (2015) Handbook of sea-level research, pp. 295-311. , Shennan I, Long AJ, Horton BP, (eds), John Wiley & Sons Ltd., New Jersey 
504 |a Lai, D.Y., Methane dynamics in northern peatlands: a review (2009) Pedosphere, 19, pp. 409-421 
504 |a Le Mer, J., Roger, P., Production, oxidation, emission and consumption of methane by soils: a review (2001) European Journal of Soil Biology, 37, pp. 25-50 
504 |a Liptay, K., Chanton, J., Czepiel, P., Mosher, B., Use of stable isotopes to determine methane oxidation in landfill cover soils (1998) Journal of Geophysical Research, 103, pp. 8243-8250 
504 |a Magen, C., Lapham, L., Pohlman, J.W., Marshall, K., Bosman, S., Casso, M., Chanton, J.P., A simple headspace equilibration method for measuring dissolved methane (2014) Limnology and Oceanography: Methods, 12, pp. 637-650 
504 |a Malvárez, A.I., (1997), Las comunidades vegetales del Delta del río Paraná. Su relación con factores ambientales y patrones de paisaje. Tesis Doctoral. Universidad de Buenos Aires. Argentina; Martens, C.S., Kelley, C.A., Chanton, J.P., Showers, W.J., Carbon and hydrogen isotopic characterization of methane from wetlands and lakes of the Yukon-Kuskokwim delta, western Alaska (1992) Journal of Geophysical Research, 97, p. 16689 
504 |a Medina, R.A., Codignotto, J.O., Evolución del delta del río Paraná y su posible vinculación con el calentamiento global (2013) Revista Museo Argentino Ciencias Naturales, 15 (2), pp. 191-200 
504 |a Preuss, I., Knoblauch, C., Gebert, J., Pfeiffer, E.M., Improved quantification of microbial CH4 oxidation efficiency in arctic wetland soils using carbon isotope fractionation (2013) Biogeosciences, 10, pp. 2539-2552 
504 |a Ramirez, J.A., Baird, A.J., Coulthard, T.J., Waddington, J.M., Ebullition of methane from peatlands: does peat act as a signal shredder? (2015) Geophysical Research Letters, 42, pp. 3371-3379 
504 |a Rosenberry, D.O., Glaser, P.H., Siegel, D.I., The hydrology of northern peatlands as affected by biogenic gas: current developments and research needs (2006) Hydrological Processes, 20, pp. 3601-3610 
504 |a Sanci, R., Panarello, H.O., Carbon stable isotopes as indicators of the origin and evolution of CO2 and CH4 in urban solid waste disposal sites and nearby áreas (2016) Environmental Earth Sciences, 75, p. 294 
504 |a Sanci, R., Panarello, H., Ostera, H., CO2 emissions from a municipal site for final disposal of solid waste in Gualeguaychú, Entre Ríos Province, Argentina (2012) Environmental Earth Sciences, 66, pp. 519-528 
504 |a Schmitt, M., Faber, E., Botz, R., Stoffers, P., Extraction of methane from seawater using ultrasonic vacuum degassing (1991) Analytical Chemistry, 63 (5), pp. 529-532. , COI: 1:CAS:528:DyaK3MXovVartw%3D%3D 
504 |a Schumacher, B.A., Methods for the determination of total organic carbon (TOC) in soils and sediments (2002) Resource Document, United States Environmental Protection Agency, NCEA-C- 1282 EMASC-001, , http://bcodata.whoi.edu/LaurentianGreatLakes_Chemistry/bs116.pdf, Accessed 21 Feb 2014 
504 |a Scranton, M.I., Donaghay, P., Sieburth, J.M., Nocturnal methane accumulation in the pycnocline of an anoxic estuarine basin (1995) Limnology and Oceanography, 40, pp. 666-672 
504 |a Steinmann, P., Eilrich, B., Leuenberger, M., Burns, S.J., Stable carbon isotope composition and concentrations of CO2 and CH4 in the deep catotelm of a peat bog (2008) Geochimica et Cosmochimica Acta, 72, pp. 6015-6026 
504 |a Strack, M., Waddington, J.M., Tuittila, E.S., Effect of water table drawdown on northern peatland methane dynamics: implications for climate change (2004) Global Biogeochemical Cycles, 18, p. GB4003 
504 |a Strack, M., Kellner, E., Waddington, J.M., Dynamics of Biogenic Gas Bubbles in Peat and Their Effects on Surface Deformations as Indicators of Deep Ebullition Fluxes in a Large Northern Peatland (2005) Global Biogeochemical Cycles, 19, p. GB1003 
504 |a Teh, Y.A., Silver, W.L., Conrad, M.E., Oxygen effects on methane production and oxidation in humid tropical forest soils (2005) Global Change Biology, 11, pp. 1283-1297 
504 |a Waldron, S., Hall, A.J., Fallick, A.E., Enigmatic stable isotope dynamics of deep peat methane (1999) Global Biogeochemical Cycles, 13, pp. 93-100 
504 |a Wassmann, R., Neue, H.U., Alberto, M.C.R., Lantin, R.S., Bueno, C., Llenaresas, D., Arah, J.R.M., Rennenberg, H., Fluxes and Pools of Methane in Wetlands Rices Oils with Varying Organic Inputs (1996) Environmental Monitoring and Assessment, 42, pp. 163-173 
504 |a Werth, M., Kuzyakov, Y., 13C fractionation at the root–microorganisms–soil interface: a review and outlook for partitioning studies (2010) Soil Biology and Biochemistry, 42, pp. 1372-1384 
504 |a Whalen, S.C., Biogeochemistry of methane exchange between natural wetlands and the atmosphere (2005) Environmental Engineering Science, 22, pp. 73-94 
504 |a Whiticar, M.J., Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane (1999) Chemical Geology, 161, pp. 291-314 
504 |a Whiticar, M.J., Faber, E., Schoell, M., Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—isotope evidence (1986) Geochemica et Cosmochimica Acta, 50, pp. 693-709. , COI: 1:CAS:528:DyaL28XktVyru7k%3D 
504 |a Wuebbles, D.J., Hayhoe, K., Atmospheric methane and global change (2002) Earth-Science Reviews, 57, pp. 177-210 
504 |a Zhang, T., Krooss, B.M., Experimental investigation on the carbon isotope fractionation of methane during gas migration by diffusion through sedimentary rocks at elevated temperature and pressure (2001) Geochemica et Cosmochimica Acta, 65, pp. 2723-2742. , COI: 1:CAS:528:DC%2BD3MXlsFGqtLg%3D 
520 3 |a Subsoil CH4 and CO2 concentrations, δ13C-CH4 and δ13C-CO2 signatures, total organic carbon (TOC) and δ13C-TOC, together with C/N ratio of organic matter, were evaluated throughout a soil profile up to the atmosphere to understand the dynamics of CH4 and CO2 in the waterlogged environment of an island of the Lower Delta of the Paraná River, Argentina. The analysis of the vertical profile showed that a significant fraction of CH4 exists as gas trapped within the sediment column, compared to CH4 dissolved in soil solution. CH4 concentration measurements in sub-saturated soils showed that free CH4 is 1 order of magnitude smaller than CH4 recovered from soil cores by ultrasonic degassing. The highest concentrations of CH4 occurred at the 90–120-cm layer. At this depth, δ13C-CH4 values resulting from methanogenesis were around − 71‰, which is well within the range of CH4 produced from CO2 reduction, and δ13C values of the associated CO2 were enriched (~ − 7‰). Isotope mass balance models used to calculate the fraction of oxidized CH4 indicated that around 30% of the CH4 produced was oxidized prior to atmospheric release. In contrast to methanogenesis, during oxidation processes δ13C-CH4 shifts to more positive values. The mineralogical, textural, isotopic, and geochemical characterization of subsoil sediments with abundant organic matter, like Paraná Delta, demonstrated that CH4 storage capacity of the soil, production, consumption, and transport are the main factors in regulating the actual flux rates of CH4 to the atmosphere. © 2018, Springer Nature Switzerland AG.  |l eng 
536 |a Detalles de la financiación: Funding information This research was supported by the Instituto de Geocronología y Geología Isotópica (UBA-CONICET). 
593 |a Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA), Intendente Güiraldes 2160, Pabellón II, Piso 1, Ciudad Universitaria, CABA CP 1428, Argentina 
593 |a Instituto de Geocronología y Geología Isotópica, Intendente Güiraldes 2160, Pabellón INGEIS, Ciudad Universitaria, CABA CP 1428, Argentina 
690 1 0 |a C ISOTOPE TRACER 
690 1 0 |a CH4 POOLS 
690 1 0 |a DEEP GASES 
690 1 0 |a WETLAND 
690 1 0 |a BIOGEOCHEMISTRY 
690 1 0 |a BIOLOGICAL MATERIALS 
690 1 0 |a CARBON DIOXIDE 
690 1 0 |a ISOTOPES 
690 1 0 |a ORGANIC CARBON 
690 1 0 |a OXIDATION 
690 1 0 |a SEDIMENTS 
690 1 0 |a SOIL MOISTURE 
690 1 0 |a WETLANDS 
690 1 0 |a ATMOSPHERIC RELEASE 
690 1 0 |a CH4 POOLS 
690 1 0 |a CONCENTRATION MEASUREMENT 
690 1 0 |a GEOCHEMICAL CHARACTERIZATION 
690 1 0 |a ISOTOPE TRACERS 
690 1 0 |a TOTAL ORGANIC CARBON 
690 1 0 |a ULTRASONIC DEGASSING 
690 1 0 |a WATERLOGGED ENVIRONMENTS 
690 1 0 |a UNDERWATER SOILS 
700 1 |a Panarello, H.O. 
773 0 |d Springer International Publishing, 2018  |g v. 190  |k n. 11  |p Environ. Monit. Assess.  |x 01676369  |w (AR-BaUEN)CENRE-4627  |t Environmental Monitoring and Assessment 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055079632&doi=10.1007%2fs10661-018-7026-3&partnerID=40&md5=9d94ae70435a23f87b700816b8b82f3d  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s10661-018-7026-3  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01676369_v190_n11_p_Sanci  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01676369_v190_n11_p_Sanci  |y Registro en la Biblioteca Digital 
961 |a paper_01676369_v190_n11_p_Sanci  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85936