Nanotechnology in Tuberculosis: State of the Art and the Challenges Ahead

Tuberculosis (TB) remains as the second most-deadly infection right behind the HIV/AIDS. Actually, in 2016, TB incidence was estimated in 10.4 million cases. Although an efficient and low-cost TB pharmacotherapy has been available for the last 50 years, the development of multi- and extra-drug-resis...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Grotz, E.
Otros Autores: Tateosian, N., Amiano, N., Cagel, M., Bernabeu, E., Chiappetta, D.A, Moretton, M.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer New York LLC 2018
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 31887caa a22025097a 4500
001 PAPER-24980
003 AR-BaUEN
005 20230607131919.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85053636350 
024 7 |2 cas  |a Antitubercular Agents; Liposomes; Micelles 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PHREE 
100 1 |a Grotz, E. 
245 1 0 |a Nanotechnology in Tuberculosis: State of the Art and the Challenges Ahead 
260 |b Springer New York LLC  |c 2018 
270 1 0 |m Moretton, M.A.; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Argentina; email: marcelamoretton@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a (2017) Global Tuberculosis Report 2017, , http://www.who.int/tb/publications/global_report/gtbr2017_main_text.pdf, Available from 
504 |a Peña, D.A., Rovetta, A.I., Hernández Del Pino, R.E., Amiano, N.O., Pasquinelli, V., Pellegrini, J.M., Mycobacterium tuberculosis dormancy antigen differentiates latently infected Bacillus Calmette-Guerin vaccinated individuals (2015) EBioMedicine, 2 (8), pp. 882-888 
504 |a WHO Global Tuberculosis Programme (1994) TB: A Global Emergency, WHO Report on the TB Epidemic, , http://www.who.int/iris/handle/10665/58749, Geneva: World Health Organization, Available from 
504 |a Porcel, J.M., Leung, C.C., Restrepo, M.I., Lee, P., Year in review 2011: respiratory infections, tuberculosis, pleural diseases, bronchoscopic intervention and imaging (2012) Respirology, 17 (3), pp. 573-582 
504 |a Treatment of Tuberculosis (2017) Guidelines for Treatment of Drug-Susceptible Tuberculosis and Patient Care, , http://apps.who.int/iris/bitstream/handle/10665/255052/9789241550000-eng.pdf?sequence=1, Update; 2017. Available from 
504 |a Centers for Disease Control and Prevention/Infectious Diseases Society of America. Treatment of tuberculosis (2003) Am J Respir Crit Care Med, 167 (4), pp. 603-662 
504 |a Stewart, G.R.B., Young, D., Tuberculosis: a problem with persistence (2003) Nat Rev Microbiol, 1 (2), pp. 97-105 
504 |a Toossi, Z., Virological and immunological impact of tuberculosis on human immunodeficiency virus type 1 disease (2003) J Infect Dis, 188 (8), pp. 1146-1155 
504 |a Kaufmann, S.H., How can immunology contribute to the control of tuberculosis? (2001) Nat Rev Immunol, 1 (1), pp. 20-30 
504 |a Riley, R.M.W., Nyka, N., Weintock, P., Storey, I., Sultan, M., Wells, W., Aerial dissemination of pulmonary tuberculosis: a two year study of contagion in a tuberculosis ward (1959) Am J Hyg, 142 (1), pp. 185-196 
504 |a Fenton, M.J., Vermeulen, M.W., Immunopathology of tuberculosis: roles of macrophages and monocytes (1996) Infect Immun, 64 (3), pp. 683-690 
504 |a Stenger, S., Rollinghoff, M., Role of cytokines in the innate immune response to intracellular pathogens (2001) Ann Rheum Dis, 60 (3), pp. 43-46 
504 |a Ramakrishnan, L., Revisiting the role of the granuloma in tuberculosis (2012) Nat Rev Immunol, 12 (5), pp. 352-366 
504 |a Hashemian, S.M., Tabarsi, P., Karam, M.B., Kahkouee, S., Marjani, M., Jamaati, H., Radiologic manifestations of pulmonary tuberculosis in patients of intensive care units (2015) Int J Mycobacteriol, 4 (3), pp. 233-238 
504 |a Schnappinger, D., Ehrt, S., Voskuil, M.I., Liu, Y., Mangan, J.A., Monahan, I.M., Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the Phagosomal Environment (2003) J Exp Med, 198 (5), pp. 693-704 
504 |a Flynn, J.L., Immunology of tuberculosis and implications in vaccine development (2004) Tuberculosis (Edinb), 84 (1-2), pp. 93-101 
504 |a Tateosian, N.L., Pellegrini, J.M., Amiano, N.O., Rolandelli, A., Casco, N., Palmero, D.J., IL17A augments autophagy in Mycobacterium tuberculosis-infected monocytes from patients with active tuberculosis in association with the severity of the disease (2017) Autophagy, 13 (7), pp. 1191-1204 
504 |a Ivanyi, J., Function and potentials of M. tuberculosis epitopes (2014) Front Immunol, 5, p. 107 
504 |a Abbas, A.K., Lichtman, A.H., Pillai, S., (2008) Cellular and Molecular Immunology, , Madrid: Elsevier-Saunders Inc. 6th edition 
504 |a Garcia-Prats, A.J., Willemse, M., Seifart, H.I., Jordaan, A.M., Werely, C.J., Donald, P.R., Acquired drug resistance during inadequate therapy in a young child with tuberculosis (2014) Pediatr Infect Dis J, 33 (8), pp. 883-885 
504 |a Panchagnula, R., Agrawal, S., Ashokraj, Y., Varma, M., Sateesh, K., Bhardwaj, V., Fixed dose combinations for tuberculosis: lessons learned from clinical, formulation and regulatory perspective (2004) Methods Find Exp Clin Pharmacol, 26 (9), pp. 703-772 
504 |a Preziosi, P., Isoniazid: metabolic aspects and toxicological correlates (2007) Curr Drug Metab, 8 (8), pp. 839-851 
504 |a Rivers, E.C., Mancera, R.L., New anti-tuberculosis drugs in clinical trials with novel mechanisms of action (2008) Drug Discov Today, 13 (23-24), pp. 1090-1098 
504 |a Moretton, M.A., Glisoni, R.J., Chiappetta, D.A., Sosnik, A., Molecular implications in the nanoencapsulation of the anti-tuberculosis drug rifampicin within flower-like polymeric micelles (2010) Colloids Surf. B: Biointerfaces, 79 (2), pp. 467-479 
504 |a Gohel, M.C., Sarvaiya, K.G., A novel solid dosage form of rifampicin and isoniazid with improved functionality (2007) AAPS PharmSciTech, 8 (3) 
504 |a El-Ridy, M.S., Mostafa, D.M., Shehab, A., Nasr, E.A., Abd El-Alim, S., Biological evaluation of pyrazinamide liposomes for treatment of Mycobacterium tuberculosis (2007) Int J Pharm, 330 (1-2), pp. 82-88 
504 |a (2018) Latent Tuberculosis Infection: Updated and Consolidated Guidelines for Programmatic Management, , http://apps.who.int/iris/bitstream/handle/10665/260233/9789241550239-eng.pdf?sequence=1, Available from 
504 |a Du Toit, L.C., Pillay, V., Danckwerts, M.P., Tuberculosis chemotherapy: current drug delivery approaches (2006) Respir Res, 7, p. 118 
504 |a (2003) Treatment of Tuberculosis. Guidelines for National Programmes, , http://apps.who.int/iris/bitstream/handle/10665/67890/WHO_CDS_TB_2003.313_eng.pdf?sequence=1, Geneva, World Health Organization, Available from 
504 |a Chang, K.-C., Yew, W.-W., Management of difficult multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis: update 2012 (2013) Respirology, 18 (1), pp. 8-21 
504 |a Pai, M., Behr, M.A., Dowdy, D., Dheda, K., Divangahi, M., Boehme, C.C., Tuberculosis (2016) Nat Rev Dis Primers, 2 
504 |a (2016) Treatment Guidelines for Drug-Resistant Tuberculosis, , http://apps.who.int/iris/bitstream/handle/10665/250125/9789241549639-eng.pdf;jsessionid=8E57A036E76B0B028129B6AC6678C423?sequence=1, update. Available from 
504 |a Caminero, J.A., Scardigli, A., Classification of antituberculosis drugs: a new proposal based on the most recent evidence (2015) Eur Respir J, 46 (4), pp. 887-893 
504 |a Falzon, D., Jaramillo, E., Schünemann, H.J., Arentz, M., Bauer, M., Bayona, J., WHO guidelines for the programmatic management of drug resistant tuberculosis: 2011 update (2011) Eur Respir J, 38 (3), pp. 516-528 
504 |a Tiberi, S., Scardigli, A., Centis, R., D'Ambrosio, L., Muñoz-Torrico, M., Salazar-Lezama, M.Á., Classifying new anti-TB drugs: rationale and future perspectives (2017) Int J Infect Dis, 56, pp. 181-184 
504 |a The use of delamanid in the treatment of multidrug-resistant tuberculosis (2014) Interim Policy Guidance. WHO/HTM/TB2014.23, , http://apps.who.int/iris/bitstream/handle/10665/137334/WHO_HTM_TB_2014.23_eng.pdf?sequence=1, Geneva: World Health Organization, Available from 
504 |a Harausz, E.P., Garcia-Prats, A.J., Seddon, J.A., Schaaf, H.S., Hesseling, A.C., Achar, J., On behalf of the sentinel project on pediatric drug-resistant tuberculosis. New drugs, repurposed drugs, and novel regimens for children with multidrug-resistant tuberculosis: practice-based recommendations (2016) Am J Respir Crit Care Med, 195 (10), pp. 1-58 
504 |a Gler, M.T., Skripconoka, V., Sanchez-Garavito, E., Xiao, H., Cabrera-Rivero, J.L., Vargas-Vasquez, D.E., Delamanid for multidrug-resistant pulmonary tuberculosis (2012) N Engl J Med, 366 (23), pp. 2151-2160 
504 |a Tadolini, M., Lingtsang, R.D., Tiberi, S., Enwerem, M., D'Ambrosio, L., Sadutshang, T.D., First case of extensively drug-resistant tuberculosis treated with both delamanid and bedaquiline (2016) Eur Respir J, 48 (3), pp. 935-938 
504 |a Wallis, R.S., Cardiac safety of extensively drug-resistant tuberculosis regimens including bedaquiline, delamanid and clofazimine (2016) Eur Respir J, 48 (5), pp. 1526-1527 
504 |a Laghari, M., Darwis, Y., Memon, A.H., Khan, A.A., Abdulbaqi, I.M.T., Assi, R.A., Nanoformulations and clinical trial candidates as probably effective and safe therapy for tuberculosis (2016) Trop J Pharm Res, 15 (1), pp. 201-211 
504 |a Bawarski, W.E., Chidlowsky, E., Bharali, D.J., Mousa, S.A., Emerging nanopharmaceuticals (2008) Nanomedicine, 4 (4), pp. 273-282 
504 |a Abed, N., Couvreur, P., Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections (2014) Int J Antimicrob Agents, 43 (6), pp. 485-496 
504 |a Changsan, N., Chan, H.K., Separovic, F., Srichana, T., Physicochemical characterization and stability of rifampicin liposome dry powder formulations for inhalation (2009) J Pharm Sci, 98 (2), pp. 628-639 
504 |a Manca, M.L., Sinico, C., Maccioni, A.M., Diez, O., Fadda, A.M., Manconi, M., Composition influence on pulmonary delivery of rifampicin liposomes (2012) Pharmaceutics, 4 (4), pp. 590-606 
504 |a Chimote, G., Banerjee, R., In vitro evaluation of inhalable isoniazid-loaded surfactant liposomes as an adjunct therapy in pulmonary tuberculosis (2010) J Biomed Mater Res B Appl Biomater, 94 (1), pp. 1-10 
504 |a Booysen, L.L., Kalombo, L., Brooks, E., Hansen, R., Gilliland, J., Gruppo, V., In vivo/in vitro pharmacokinetic and pharmacodynamic study of spray-dried poly-(dl-lactic-co-glycolic) acid nanoparticles encapsulating rifampicin and isoniazid (2013) Int J Pharm, 444 (1-2), pp. 10-17 
504 |a Merisko-Liversidge, E., Liversidge, G.G., Cooper, E.R., Nanosizing: a formulation approach for poorly-water-soluble compounds (2003) Eur J Pharm Sci, 18 (2), pp. 113-120 
504 |a Pooja, D., Tunki, L., Kulhari, H., Reddy, B.B., Sistla, R., Characterization, biorecognitive activity and stability of WGA grafted lipid nanostructures for the controlled delivery of rifampicin (2015) Chem Phys Lipids, 193, pp. 11-17 
504 |a Singh, H., Bhandari, R., Kaur, I.P., Encapsulation of rifampicin in a solid lipid nanoparticulate system to limit its degradation and interaction with isoniazid at acidic pH (2013) Int J Pharm, 446 (1-2), pp. 106-111 
504 |a Singh, H., Jindal, S., Singh, Sharma G, Kaur IP. Nano-formulation of rifampicin with enhanced bioavailability: development, characterization and in-vivo safety (2015) Int J Pharm, 485 (1-2), pp. 138-151 
504 |a Vieira, A.C.C., Chaves, L.L., Pinheiro, S., Pinto, S., Pinheiro, M., Lima, S.C., Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis (2018) Int J Pharm, 536 (1), pp. 478-485 
504 |a Banik, N., Hussain, A., Ramteke, A., Sharma, H.K., Maji, T.K., Preparation and evaluation of the effect of particle size on the properties of chitosan-montmorillonite nanoparticles loaded with isoniazid (2012) RSC Adv, 2, pp. 10519-10528 
504 |a Trousil, J., Filippov, S.K., Hrubý, M., Mazel, T., Syrová, Z., Cmarko, D., System with embedded drug release and nanoparticle degradation sensor showing efficient rifampicin delivery into macrophages (2017) Nanomedicine, 13 (1), pp. 307-315 
504 |a Gajendiran, M., Gopi, V., Elangovan, V., Murali, R.V., Balasubramanian, S., Isoniazid loaded core shell nanoparticles derived from PLGA-PEG-PLGA tri-block copolymers: in vitro and in vivo drug release (2013) Colloids Surf B: Biointerfaces, 104, pp. 107-115 
504 |a Pandey, R., Khuller, G.K., Nanoparticle-based oral drug delivery system for an injectable antibiotic - streptomycin. Evaluation in a murine tuberculosis model (2007) Chemotherapy, 53 (6), pp. 437-441 
504 |a Pandey, R., Sharma, A., Zahoor, A., Sharma, S., Khuller, G.K., Prasad, B., Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis (2003) J Antimicrob Chemother, 52 (6), pp. 981-986 
504 |a Ahmad, Z., Sharma, S., Khuller, G.K., Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis (2005) Int J Antimicrob Agents, 26 (4), pp. 298-303 
504 |a Cagel, M., Tesan, F.C., Bernabeu, E., Salgueiro, M.J., Zubillaga, M.B., Moretton, M.A., Polymeric mixed micelles as nanomedicines: achievements and perspectives (2017) Eur J Pharm Biopharm, 113, pp. 211-228 
504 |a Owen, S.C., Chan, D.P.Y., Shoichet, M.S., Polymeric micelle stability (2012) Nano Today, 7, pp. 53-65 
504 |a Moretton, M.A., Höcht, C., Taira, C., Sosnik, A., Rifampicin-loaded ‘flower-like’ polymeric micelles for enhanced oral bioavailability in an extemporaneous liquid fixed-dose combination with isoniazid (2014) Nanomedicine (London), 9 (11), pp. 1635-1650 
504 |a Moretton, M.A., Chiappetta, D.A., Sosnik, A., Cryoprotection-lyophilization and physical stabilization of rifampicin-loaded flower-like polymeric micelles (2012) J R Soc Interface, 9 (68), pp. 487-502 
504 |a Grotz, E., Bernabeu, E., Pappalardo, M., Chiappetta, D.A., Moretton, M.A., Nanoscale Kolliphor® HS 15 micelles to minimize rifampicin selfaggregation in aqueous media (2017) J Drug Deliv Sci Technol, 41, pp. 1-6 
504 |a Praphakar, R.A., Munusamy, M.A., Rajan, M., Development of extended-voyaging anti-oxidant linked amphiphilic polymeric Nanomicelles for anti-tuberculosis drug delivery (2017) Int J Pharm, 524 (1-2), pp. 168-177 
504 |a Upadhyay, S., Khan, I., Gothwal, A., Pachouri, P.K., Bhaskar, N., Gupta, U.D., Conjugated and entrapped HPMA-PLA Nano-polymeric micelles based dual delivery of first line anti TB drugs: improved and safe drug delivery against sensitive and resistant Mycobacterium tuberculosis (2017) Pharm Res, 34 (9), pp. 1944-1955 
504 |a Jain, J.P., Ayen, W.Y., Kumar, N., Self assembling polymers as Polymersomes for drug delivery (2011) Curr Pharm Des, 17 (1), pp. 65-79 
504 |a Chang, H.-Y., Sheng, Y.-J., Tsao, H.-K., Structural and mechanical characteristics of Polymersomes (2014) Soft Matter, 10 (34), pp. 6373-6681 
504 |a Moretton, M.A., Cagel, M., Bernabeu, E., Gonzalez, L., Chiappetta, D.A., Nanopolymersomes as potential carriers for rifampicin pulmonary delivery (2015) Colloids Surf B: Biointerfaces, 136, pp. 1017-1025 
504 |a Moghassemi, S., Hadjizadeh, A., Nano-niosomes as nanoscale drug delivery systems: an illustrated review (2014) J Control Release, 185 (1), pp. 22-36 
504 |a Junyaprasert, V.P., Teeranachaideekul, V., Supaperm, T., Effect of charged and non-ionic membrane additives on physicochemical properties and stability of niosomes (2008) AAPS PharmSciTech, 9 (3), pp. 851-859 
504 |a El-Ridy, M.S., Abdelbary, A., Nasr, E.A., Khalil, R.M., Mostafa, D.M., El-Batal, A.I., Niosomal encapsulation of the antitubercular drug, pyrazinamide (2011) Drug Dev Ind Pharm, 37 (9), pp. 1110-1118 
504 |a El-Ridy, M.S., Yehia, S.A., Kassem, M.A., Mostafa, D.M., Nasr, E.A., Asfour, M.H., Niosomal encapsulation of ethambutol hydrochloride for increasing its efficacy and safety (2015) Drug Delivery, 22 (1), pp. 21-36 
504 |a Mehta, S.K., Jindal, N., Kaur, G., Quantitative investigation, stability and in vitro release studies of anti-TB drugs in triton niosomes (2011) Colloids Surf B: Biointerfaces, 87 (1), pp. 173-179 
504 |a Mehta, S.K., Jindal, N., Formulation of Tyloxapol niosomes for encapsulation, stabilization and dissolution of anti-tubercular drugs (2013) Colloids Surf B: Biointerfaces, 101, pp. 434-441 
504 |a (2016) Frequently Asked Questions about the Implementation of the New WHO Recommendation on the Use of the Shorter MDR-TB Regimen under Programmatic Conditions, , http://www.who.int/tb/areas-of-work/drug-resistanttb/treatment/FAQshorter_MDR_regimen.pdf, Available from 
504 |a Adikwu, E., Deo, O., Fluoroquinolones reported hepatotoxicity (2012) Pharmacology and Pharmacy, 3, pp. 328-336 
504 |a Mustafa, S., Devi, V.K., Pai, R.S., Effect of PEG and water-soluble chitosan coating on moxifloxacin-loaded PLGA long-circulating nanoparticles (2016) Drug Deliv Transl Res, 7 (1), pp. 27-36 
504 |a Sarfraz, M., Shi, W., Gao, Y., Clas, S.D., Roa, W., Bou-Chacra, N., Immune response to antituberculosis drug-loaded gelatin and polyisobutyl-cyanoacrylate nanoparticles in macrophages (2016) Ther Deliv, 7 (4), pp. 213-228 
504 |a Bhardwaj, A., Mehta, S., Yadav, S., Singh, S.K., Grobler, A., Goyal, A.K., Pulmonary delivery of antitubercular drugs using spray-dried lipid – polymer hybrid nanoparticles (2015) Artif Cells Nanomed Biotechnol, 44 (6), pp. 1544-1555 
504 |a Adams, L.B., Sinha, I., Franzblau, S.G., Krahenbuhl, J.L., Mehta, R.T., Effective treatment of acute and chronic murine tuberculosis with liposome-encapsulated Clofazimine (1999) Antimicrob Agents Chemother, 43 (7), pp. 1638-1643 
504 |a Gaidukevich, S.K., Mikulovich, Y.L., Smirnova, T.G., Andreevskaya, S.N., Sorokoumova, G.M., Chernousova, L.N., Antibacterial effects of liposomes containing phospholipid Cardiolipin and fluoroquinolone Levofl oxacin on Mycobacterium tuberculosis with extensive drug resistance (2016) Bull Exp Biol Med, 160 (5), pp. 675-676 
504 |a Breen, R.A., Swaden, L., Ballinger, J., Lipman, M.C., Tuberculosis and HIV co-infection: a practical therapeutic approach (2006) Drugs, 66 (18), pp. 2299-2308 
504 |a (2018) Managing Drug Interactions in the Treatment of Hiv-Related Tuberculosis, , https://www.cdc.gov/tb/publications/guidelines/tb_hiv_drugs/recommendations03.htm, Available from 
504 |a Gaspar, M.M., Cruz, A., Penha, A.F., Reymăo, J., Sousa, A.C., Eleutério, C.V., Rifabutin encapsulated in liposomes exhibits increased therapeutic activity in a model of disseminated tuberculosis (2008) Int J Antimicrob Agents, 31 (1), pp. 37-45 
504 |a (2015) The End TB Strategy, , http://www.who.int/tb/End_TB_brochure.pdf?ua=1, Available from 
504 |a (2018) Interim Guidance on the Use of Bedaquiline to Treat MDR-TB, , http://www.who.int/tb/challenges/mdr/bedaquiline/en/, Available from 
504 |a Field, S.K., Bedaquiline for the treatment of multidrug-resistant tuberculosis: great promise or disappointment? (2015) Ther Adv Chronic Dis, 6 (4), pp. 170-184 
504 |a (2015), https://www.clinicaltrials.gov/ct2/show/NCT02454205?term=bedaquiline&rank=28, Identifier NCT02454205. Available from; (2015) The Evaluation of a Standard Treatment Regimen of Anti-tuberculosis Drugs for Patients With MDR-TB (STREAM), , https://www.clinicaltrials.gov/ct2/show/NCT02409290?term=stream&rank=8, Identifier NCT02409290, Available from 
504 |a (2017) Safety and Efficacy of Various Doses and Treatment Durations of Linezolid plus Bedaquiline and Pretomanid in Participants with Pulmonary TB, XDR-TB, Pre- XDR-TB Or Non-Responsive/Intolerant MDR-TB (Zenix), , https://www.clinicaltrials.gov/ct2/show/NCT03086486?term=bedaquiline&rank=15, Identifier NCT03086486, Available from 
504 |a (2014), https://www.clinicaltrials.gov/ct2/show/NCT02193776?term=bedaquiline&rank=14, A Phase 2 Open Label Partially Randomized Trial to Evaluate the Efficacy, Safety and Tolerability of Combinations of Bedaquiline, Moxifloxacin, PA-824 and Pyrazinamide in Adult Subjects With Drug-Sensitive or Multi Drug-Resistant Pulmonary Tuberculosis. (NC-005), Identifier NCT02193776. Available from; (2013) The Use of Bedaquiline in the Treatment of Multidrug-Resistant Tuberculosis, , http://apps.who.int/iris/bitstream/10665/84879/1/9789241505482_eng.pdf, Available from 
504 |a Ritsema, J.A.S., Herschberg, E.M.A., Borgos, S.E., Løvmo, C., Schmid, R.Y.M., Te Welscher, Y.M., Relationship between polarities of antibiotic and polymer matrix on nanoparticle formulations based on aliphatic polyesters Int J Pharm 2017, , https://doi.org/10.1016/j.ijpharm.2017.11.017, Article in press 
504 |a De Matteis, L., Jary, D., Lucía, A., García-Embid, S., Serrano-Sevilla, I., Pérez, D., New active formulations against M. tuberculosis: Bedaquiline encapsulation in lipid nanoparticles and chitosan nanocapsules (2018) Chem Eng J, 340, pp. 181-191 
504 |a Bertrand, N., Wu, J., Xu, X., Kamaly, N., Farokhzad, O.C., Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology (2014) Adv Drug Deliv Rev, 66, pp. 2-25 
504 |a Traini, D., Young, P.M., Drug delivery for tuberculosis: is inhaled therapy the key to success? (2017) Ther Deliv, 8 (10), pp. 819-821 
504 |a Irache, J.M., Salman, H.H., Gamazo, G., Espuelas, S., Mannose-targeted systems for the delivery of therapeutics (2008) Expert Opin Drug Deliv, 5 (6), pp. 703-724 
504 |a Song, X., Lin, Q., Guo, L., Fu, Y., Han, J., Ke, H., Rifampicin loaded Mannosylated cationic nanostructured lipid carriers for alveolar macrophage-specific delivery (2015) Pharm Res, 32 (5), pp. 1741-1751 
504 |a Vieira, A.C.C., Chaves, L.L., Pinheiro, M., Costa Lima, S.A., Ferreira, D., Bruno Sarmento, B., Mannosylated solid lipid nanoparticles for the selective delivery of rifampicin to macrophages (2018) Artif Cells Nanomed Biotechnol, 12, pp. 1-11 
504 |a Maretti, E., Costantino, L., Rustichelli, C., Leo, E., Croce, M.A., Buttini, F., Surface engineering of solid lipid nanoparticle assemblies by methyl α-D-mannopyranoside for the active targeting to macrophages in anti-tuberculosis inhalation therapy (2017) Int J Pharm, 528 (1-2), pp. 440-451 
504 |a Costa, A., Sarmento, B., Seabra, V., Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages (2018) Eur J Pharm Sci, 114, pp. 103-113 
504 |a Moretton, M.A., Chiappetta, D.A., Andrade, F., das Neves J, Ferreira D, Sarmento B, et al. hydrolyzed galactomannan-modified nanoparticles and flower-like polymeric micelles for the active targeting of rifampicin to macrophages (2013) J Biomed Nanotechnol, 9 (6), pp. 1076-1087 
504 |a Madaan, K., Kumar, S., Poonia, N., Lather, V., Pandita, D., Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues (2014) J Pharm Bioallied Sci, 6 (3), pp. 139-150 
504 |a Kumar, P.V., Asthana, A., Dutta, T., Jain, N.K., Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers (2006) J Drug Target, 14 (8), pp. 546-556 
504 |a Katoh, S., Miyagi, T., Taniguchi, H., Matsubara, Y.-I., Kadota, J.-I., Tominaga, A., Cutting edge: an inducible Sialidase regulates the hyaluronic acid binding ability of CD44-bearing human monocytes (1999) J Immunol, 162 (9), pp. 5058-5061 
504 |a Gao, Y., Sarfraz, M.K., Clas, S.D., Roa, W., Löbenberg, R., Hyaluronic acid-tocopherol succinate-based self-assembling micelles for targeted delivery of rifampicin to alveolar macrophages (2015) J Biomed Nanotechnol, 11 (8), pp. 1312-1329 
504 |a (2015) Global TB Report, , http://www.who.int/iris/handle/10665/191102, Available from, Accessed Sept 2018 
504 |a Zwerling, A., Dowdy, D., von Delft, A., Taylor, H., Merritt, M.W., Incorporating social justice and stigma in cost-effectiveness analysis: drug-resistant tuberculosis treatment (2017) Int J Tuberc Lung Dis, 21 (11), pp. 69-74 
504 |a Moghimi, S.M., Hunter, A.C., Murray, J.C., Nanomedicine: current status and future prospects (2005) FASEB J, 19 (3), pp. 311-330 
504 |a Patil, K., Bagade, S., Bonde, S., Sharma, S., GauravSaraogi, G., Recent therapeutic approaches for the management of tuberculosis: challenges and opportunities (2018) Biomed Pharmacother, 99, pp. 735-745 
504 |a Mohammad, I.S., He, W., Yin, L., Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR (2018) Biomed Pharmacother, 100, pp. 335-348 
504 |a te Brake, L.H.M., de Knegt, G.J., de Steenwinkel, J.E., van Dam, T.J.P., Burger, D.M., Russel, F.G.M., The role of efflux pumps in tuberculosis treatment and their promise as a target in drug development: unraveling the black box (2018) Annu Rev Pharmacol Toxicol, 58, pp. 271-291 
504 |a Li, P., Gu, Y., Li, J., Xie, L., Li, X., Xie, J., Mycobacterium tuberculosis major facilitator superfamily transporters (2017) J Membr Biol, 250 (6), pp. 573-585 
504 |a Hamed, K., Debonnett, L., Tobramycin inhalation powder for the treatment of pulmonary Pseudomonas aeruginosa infection in patients with cystic fibrosis: a review based on clinical evidence (2017) Ther Adv Respir Dis, 11 (5), pp. 193-209 
504 |a Manconi, M., Manca, M.L., Valentia, D., Escribano, E., Hillaireau, H., Anna Maria Fadda, A.M., Chitosan and hyaluronan coated liposomes for pulmonary administration of curcumin (2017) Int J Pharm, 525 (1), pp. 203-210 
504 |a Wang, L., Zhou, Y., Wu, M., Wu, M., Li, X., Gong, X., Functional nanocarrier for drug and gene delivery via local administration in mucosal tisúes (2018) Nanomedicine (London), 13 (1), pp. 69-88 
504 |a Telko, M.J., Hickey, A.J., Dry powder inhaler formulation (2005) Respir Care, 50 (9), pp. 1209-1227 
504 |a Abdelwahed, W., Degobert, G., Fessi H. investigation of nanocapsules stabilization by amorphous excipients during freeze-drying and storage (2006) Eur J Pharm Biopharm, 63 (2), pp. 87-94 
504 |a Igarashi, M., Ishizaki, Y., Takahashi, Y., New antituberculous drugs derived from natural products: current perspectives and issues in antituberculous drug development (2018) J Antibiot, 71 (1), pp. 15-25 
520 3 |a Tuberculosis (TB) remains as the second most-deadly infection right behind the HIV/AIDS. Actually, in 2016, TB incidence was estimated in 10.4 million cases. Although an efficient and low-cost TB pharmacotherapy has been available for the last 50 years, the development of multi- and extra-drug-resistant Mycobacterium tuberculosis (Mtb) strains has put on the spot the necessity of improved TB regimens. In this framework, this review article presents the main relevant research outcomes of nanotechnology in TB. The novel delivery systems for antituberculosis drugs have been discussed. Moreover, the active-targeted nanomedicines to the Mtb reservoirs enlighten the possibility to eradicate low-replicant mycobacteria and diminish latent TB. Finally, we present an overview of the TB socio-economic impact and the cost-related features of TB regimens associated with the use of nanoformulations. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Facultad de Ciencias Físicas y Matemáticas 
536 |a Detalles de la financiación: Facultad de Química, Universidad Autonoma de Yucatan 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina 
536 |a Detalles de la financiación: Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN),, Ciudad Universitaria, Buenos Aires, Argentina 
536 |a Detalles de la financiación: Authors thank the Universidad de Buenos Aires (Grant UBACyT 20020130200038BA). Estefania Grotz and Maximiliano Cagel are supported by doctoral scholarship of CONICET. Marcela A. Moretton, Nancy Tateosian, Nicolas Amiano, Ezequiel Bernabeu, and Diego A. Chiappetta are partially supported by CONICET, Argentina. 
593 |a Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica I, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Ciudad Universitaria, Buenos Aires, Argentina 
690 1 0 |a ACTIVE TARGETING 
690 1 0 |a NANOTECHNOLOGY 
690 1 0 |a RESPIRABLE NANOCARRIERS 
690 1 0 |a LIPOSOME 
690 1 0 |a NANOPARTICLE 
690 1 0 |a NIOSOME 
690 1 0 |a TUBERCULOSTATIC AGENT 
690 1 0 |a TUBERCULOSTATIC AGENT 
690 1 0 |a COST 
690 1 0 |a DISEASE CARRIER 
690 1 0 |a DISEASE ERADICATION 
690 1 0 |a DRUG DELIVERY SYSTEM 
690 1 0 |a DRUG THERAPY 
690 1 0 |a HUMAN 
690 1 0 |a INCIDENCE 
690 1 0 |a MICELLE 
690 1 0 |a NANOMEDICINE 
690 1 0 |a NANOTECHNOLOGY 
690 1 0 |a NONHUMAN 
690 1 0 |a POLYMERIZATION 
690 1 0 |a PREVALENCE 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a RANDOMIZED CONTROLLED TRIAL (TOPIC) 
690 1 0 |a REVIEW 
690 1 0 |a SOCIOECONOMICS 
690 1 0 |a ANIMAL 
690 1 0 |a ANTIBIOTIC RESISTANCE 
690 1 0 |a CHEMISTRY 
690 1 0 |a DRUG DEVELOPMENT 
690 1 0 |a DRUG EFFECT 
690 1 0 |a MYCOBACTERIUM TUBERCULOSIS 
690 1 0 |a NANOTECHNOLOGY 
690 1 0 |a PATHOLOGY 
690 1 0 |a PROCEDURES 
690 1 0 |a ANIMALS 
690 1 0 |a ANTITUBERCULAR AGENTS 
690 1 0 |a DRUG DELIVERY SYSTEMS 
690 1 0 |a DRUG DISCOVERY 
690 1 0 |a DRUG RESISTANCE, BACTERIAL 
690 1 0 |a HUMANS 
690 1 0 |a LIPOSOMES 
690 1 0 |a MICELLES 
690 1 0 |a MYCOBACTERIUM TUBERCULOSIS 
690 1 0 |a NANOMEDICINE 
690 1 0 |a NANOPARTICLES 
690 1 0 |a NANOTECHNOLOGY 
650 1 7 |2 spines  |a TUBERCULOSIS 
650 1 7 |2 spines  |a TUBERCULOSIS 
650 1 7 |2 spines  |a TUBERCULOSIS 
650 1 7 |2 spines  |a TUBERCULOSIS 
700 1 |a Tateosian, N. 
700 1 |a Amiano, N. 
700 1 |a Cagel, M. 
700 1 |a Bernabeu, E. 
700 1 |a Chiappetta, D.A. 
700 1 |a Moretton, M.A. 
773 0 |d Springer New York LLC, 2018  |g v. 35  |k n. 11  |p Pharm. Res.  |x 07248741  |t Pharmaceutical Research 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053636350&doi=10.1007%2fs11095-018-2497-z&partnerID=40&md5=ec50fb7339dfe47e662dff1ba6373e4c  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11095-018-2497-z  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_07248741_v35_n11_p_Grotz  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07248741_v35_n11_p_Grotz  |y Registro en la Biblioteca Digital 
961 |a paper_07248741_v35_n11_p_Grotz  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85933