A Nonparametric Approach for Assessing Precision in Georeferenced Point Clouds Best Fit Planes: Toward More Reliable Thresholds

The fitting of a plane to data points is essential to the geosciences. However, it is recognized that the reliability of these best fit planes depends upon the point set distribution and geometry, evaluated in terms of the eigen-based parameters derived from the moment of inertia analysis. Despite i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Gallo, L.C
Otros Autores: Cristallini, Ernesto Osvaldo, Svarc, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Blackwell Publishing Ltd 2018
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 17949caa a22011417a 4500
001 PAPER-24979
003 AR-BaUEN
005 20250211090246.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85057790725 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Gallo, L.C. 
245 1 2 |a A Nonparametric Approach for Assessing Precision in Georeferenced Point Clouds Best Fit Planes: Toward More Reliable Thresholds 
260 |b Blackwell Publishing Ltd  |c 2018 
270 1 0 |m Gallo, L.C.; Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires, Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Ciudad UniversitariaArgentina; email: len.gallo@gmail.com 
504 |a Baker, M., Statisticians issue warning over misuse of P values (2016) Nature, 531 (7593), p. 151. , https://doi.org/10.1038/nature.2016.19503 
504 |a Benjamin, D.J., Berger, J.O., Johannesson, M., Nosek, B.A., Wagenmakers, E.J., Berk, R., Bollen, K.A., Johnson, V.E., Redefine statistical significance (2018) Nature Human Behaviour, 2 (1), pp. 6-10. , https://doi.org/10.1038/s41562-017-0189-z 
504 |a Benn, D.I., Fabric shape and the interpretation of sedimentary fabric data (1994) Journal of Sedimentary Research, 64A (4), pp. 910-915. , https://doi.org/10.1306/D4267F05-2B26-11D7-8648000102C1865D 
504 |a Biber, K., Khan, S.D., Seers, T.D., Sarmiento, S., Lakshmikantha, M.R., Quantitative characterization of a naturally fractured reservoir analog using a hybrid lidar-gigapixel imaging approach (2018) Geosphere, 14 (2), pp. 710-730. , https://doi.org/10.1130/GES01449.1 
504 |a Chatzaras, V., Kruckenberg, S.C., Cohen, S.M., Medaris, L.G., Withers, A.C., Bagley, B., Axial-type olivine crystallographic preferred orientations: The effect of strain geometry on mantle texture (2016) Journal of Geophysical Research: Solid Earth, 121, pp. 4895-4922. , https://doi.org/10.1002/2015JB012628 
504 |a Chen, J., Zhu, H., Li, X., Automatic extraction of discontinuity orientation from rock mass surface 3D point cloud (2016) Computers and Geosciences, 95, pp. 18-31. , https://doi.org/10.1016/j.cageo.2016.06.015 
504 |a Chernik, M., (1999) Bootstrap methods: A practitioner's guide, , New York, John Wiley 
504 |a Constable, C., Tauxe, L., The bootstrap for magnetic susceptibility tensors (1990) Journal of Geophysical Research, 95 (B6), pp. 8383-8395. , https://doi.org/10.1029/JB095iB06p08383 
504 |a Dueholm, K.S., Olsen, T., Reservoir analog studies using multimodel photogrammetry: A new tool for the petroleum industry (1993) American Association of Petroleum Geologists Bulletin, 77. , https://doi.org/10.1306/BDFF8FBA-1718-11D7-8645000102C1865D 
504 |a Efron, B., Bootstrap methods: Another look at the jackknife (1979) The Annals of Statistics, 7 (1), pp. 1-26. , https://doi.org/10.1214/aos/1176344552 
504 |a Fernández, O., Obtaining a best fitting plane through 3D georeferenced data (2005) Journal of Structural Geology, 27 (5), pp. 855-858. , https://doi.org/10.1016/j.jsg.2004.12.004 
504 |a Ferrero, A.M., Forlani, G., Roncella, R., Voyat, H.I., Advanced geostructural survey methods applied to rock mass characterization (2009) Rock Mechanics and Rock Engineering, 42 (4), pp. 631-665. , https://doi.org/10.1007/s00603-008-0010-4 
504 |a Fischler, M.A., Bolles, R.C., Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography (1981) Communications of the ACM, 24 (6), pp. 381-395. , https://doi.org/10.1145/358669.358692 
504 |a Fisher, N.I., Lewis, T., Embleton, B.J.J., (1987) Statistical analysis of spherical data, 343, , https://doi.org/10.1017/CBO9780511623059 
504 |a Flinn, B.Y.D., On folding during three-dimensional progressive deformation (1962) Geological Society of London Quarterly Journal, 118 (1-4), pp. 385-428. , https://doi.org/10.1144/gsjgs.118.1.0385 
504 |a Fournier, A., Fussell, D., Carpenter, L., Computer rendering of stochastic models (1982) Communications of the ACM, 25 (6), pp. 371-384. , https://doi.org/10.1145/358523.358553 
504 |a Gallo, L.C., Tomezzoli, R.N., Cristallini, E.O., A pure dipole analysis of the Gondwana apparent polar wander path: Paleogeographic implications in the evolution of Pangea (2017) Geochemistry, Geophysics, Geosystems, 18, pp. 1499-1519. , https://doi.org/10.1002/2016GC006692 
504 |a García-Sellés, D., Falivene, O., Arbués, P., Gratacos, O., Tavani, S., Muñoz, J.A., Supervised identification and reconstruction of near-planar geological surfaces from terrestrial laser scanning (2011) Computers and Geosciences, 37 (10), pp. 1584-1594. , https://doi.org/10.1016/j.cageo.2011.03.007 
504 |a Gomes, R.K., De Oliveira, L.P.L., Gonzaga, L., Tognoli, F.M.W., Veronez, M.R., De Souza, M.K., An algorithm for automatic detection and orientation estimation of planar structures in LiDAR-scanned outcrops (2016) Computers and Geosciences, 90, pp. 170-178. , https://doi.org/10.1016/j.cageo.2016.02.011 
504 |a Gough, A.J., Mahoney, A.R., Langhorne, P.J., Williams, M.J.M., Haskell, T.G., Sea ice salinity and structure: A winter time series of salinity and its distribution (2012) Journal of Geophysical Research, 117. , https://doi.org/10.1029/2011JC007527 
504 |a Jones, R.R., Pearce, M.A., Jacquemyn, C., Watson, F.E., Robust best-fit planes from geospatial data (2016) Geosphere, 12 (1), pp. 196-202. , https://doi.org/10.1130/GES01247.1 
504 |a Ketcham, R.A., Three-dimensional grain fabric measurements using high-resolution X-ray computed tomography (2005) Journal of Structural Geology, 27 (7), pp. 1217-1228. , https://doi.org/10.1016/j.jsg.2005.02.006 
504 |a Kirschvink, J.L., The least-squares line and plane and the analysis of paleomagnetic data (1980) Geophysical Journal of the Royal Astronomical Society, 62 (3), pp. 699-718. , https://doi.org/10.1111/j.1365-246X.1980.tb02601.x 
504 |a Lato, M., Diederichs, M.S., Hutchinson, D.J., Harrap, R., Optimization of LiDAR scanning and processing for automated structural evaluation of discontinuities in rockmasses (2009) International Journal of Rock Mechanics and Mining Sciences, 46 (1), pp. 194-199. , https://doi.org/10.1016/j.ijrmms.2008.04.007 
504 |a Lato, M., Kemeny, J., Harrap, R.M., Bevan, G., Rock bench: Establishing a common repository and standards for assessing rockmass characteristics using LiDAR and photogrammetry (2013) Computers and Geosciences, 50, pp. 106-114. , https://doi.org/10.1016/j.cageo.2012.06.014 
504 |a Li, X., Chen, J., Zhu, H., A new method for automated discontinuity trace mapping on rock mass 3D surface model (2016) Computers and Geosciences, 89, pp. 118-131. , https://doi.org/10.1016/j.cageo.2015.12.010 
504 |a McCaffrey, K.J.W., Jones, R.R., Holdsworth, R.E., Wilson, R.W., Clegg, P., Imber, J., Holliman, N., Trinks, I., Unlocking the spatial dimension: Digital technologies and the future of geoscience fieldwork (2005) Journal of the Geological Society, 162 (6), pp. 927-938. , https://doi.org/10.1144/0016-764905-017 
504 |a McPherron, S.P., Additional statistical and graphical methods for analyzing site formation processes using artifact orientations coming from total station measurements (2017) PLoS One, 13 (1), pp. 1-21. , https://doi.org/10.1371/journal.pone.0190195 
504 |a Méheust, Y., Schmttbuhl, J., Geometrical heterogeneities and permeability anisotropy of rough fractures (2001) Journal of Geophysical Research, 106 (B2), pp. 2098-2102. , https://doi.org/10.1029/2000JB900306 
504 |a Ouillon, G., Ducorbier, C., Sornette, D., Automatic reconstruction of fault networks from seismicity catalogs: Three-dimensional optimal anisotropic dynamic clustering (2008) Journal of Geophysical Research, 113. , https://doi.org/10.1029/2007JB005032 
504 |a Palit, A., Williams, M.A., Turley, G.A., Renkawitz, T., Weber, M., Femur First navigation can reduce impingement severity compared to traditional free hand total hip arthroplasty (2017) Scientific Reports, 7 (1), pp. 7238-7239. , https://doi.org/10.1038/s41598-017-07644-4 
504 |a Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., (1986) Numerical recipes: The art of scientific computing, , Cambridge, MA, Cambridge University Press 
504 |a Pringle, J.K., Howell, J.A., Hodgetts, D., Westerman, A.R., Hodgson, D.M., Virtual outcrop models of petroleum reservoir analogues: A review of the current state-of-the-art (2006) First Break, 24 (1093), pp. 33-42. , https://doi.org/10.3997/1365-2397.2006005 
504 |a Reshef, D.N., Reshef, Y.A., Finucane, H.K., Grossman, S.R., McVean, G., Turnbaugh, P.J., Lander, E.S., Sabeti, P.C., Detecting novel associations in large data sets (2011) Science, 334 (6062), pp. 1518-1524. , https://doi.org/10.1126/science.1205438 
504 |a Riquelme, A.J., Abellán, A., Tomás, R., Discontinuity spacing analysis in rock masses using 3D point clouds (2015) Engineering Geology, 195, pp. 185-195. , https://doi.org/10.1016/j.enggeo.2015.06.009 
504 |a Riquelme, A.J., Abellán, A., Tomás, R., Jaboyedoff, M., A new approach for semi-automatic rock mass joints recognition from 3D point clouds (2014) Computers and Geosciences, 68, pp. 38-52. , https://doi.org/10.1016/j.cageo.2014.03.014 
504 |a Santangelo, M., Marchesini, I., Cardinali, M., Fiorucci, F., Rossi, M., Bucci, F., Guzzetti, F., A method for the assessment of the influence of bedding on landslide abundance and types (2015) Landslides, 12 (2), pp. 295-309. , https://doi.org/10.1007/s10346-014-0485-x 
504 |a Scheidegger, A.E., On the statistics of the orientation of bedding planes, grain axes, and similar sedimentological data (1965) U.S. Geological Survey Professional Paper, 525, pp. 164-167 
504 |a Schmidt, P.W., Bias in converging great circle methods (1985) Earth and Planetary Science Letters, 72 (4), pp. 427-432. , https://doi.org/10.1016/0012-821X(85)90063-9 
504 |a Seers, T.D., Hodgetts, D., Comparison of digital outcrop and conventional data collection approaches for the characterization of naturally fractured reservoir analogues (2014) Geological Society Special Publication, 374 (1), pp. 51-77. , https://doi.org/10.1144/SP374.13 
504 |a Seers, T.D., Hodgetts, D., Extraction of three-dimensional fracture trace maps from calibrated image sequences (2016) Geosphere, 12 (4), pp. 1323-1340. , https://doi.org/10.1130/GES01276.1 
504 |a Seers, T.D., Hodgetts, D., Probabilistic constraints on structural lineament best fit plane precision obtained through numerical analysis (2016) Journal of Structural Geology, 82, pp. 37-47. , https://doi.org/10.1016/j.jsg.2015.11.004 
504 |a Slob, S., van Knapen, B., Hack, H.R.G.K., Turner, K., Kemeny, J., Method for automated discontinuity analysis of rock slopes with three-dimensional laser scanning (2005) Transportation Research Record, 1913 (1), pp. 187-194. , https://doi.org/10.3141/1913-18 
504 |a Speed, T., A correlation for the 21st century (2011) Science, 334 (6062), pp. 1502-1503. , https://doi.org/10.1126/science.1215894 
504 |a Telling, J., Lyda, A., Hartzell, P., Glennie, C., Review of Earth science research using terrestrial laser scanning (2017) Earth-Science Reviews, 169 (November 2016), pp. 35-68. , https://doi.org/10.1016/j.earscirev.2017.04.007 
504 |a Thiele, S.T., Grose, L., Samsu, A., Micklethwaite, S., Vollgger, S.A., Cruden, A.R., Rapid, semi-automatic fracture and contact mapping for point clouds, images and geophysical data (2017) Solid Earth, 8 (6), pp. 1241-1253. , https://doi.org/10.5194/se-8-1241-2017 
504 |a Vasuki, Y., Holden, E.J., Kovesi, P., Micklethwaite, S., Semi-automatic mapping of geological structures using UAV-based photogrammetric data: An image analysis approach (2014) Computers and Geosciences, 69, pp. 22-32. , https://doi.org/10.1016/j.cageo.2014.04.012 
504 |a Wang, Y., Ouillon, G., Woessner, J., Sornette, D., Husen, S., Automatic reconstruction of fault networks from seismicity catalogs including location uncertainty (2013) Journal of Geophysical Research: Solid Earth, 118, pp. 5956-5975. , https://doi.org/10.1002/2013JB010164 
504 |a Wickham, H., (2016) ggplot2: Elegant graphics for data analysis, , https://doi.org/10.1007/978-3-319-24277-4, New York, Springer 
504 |a Wilson, C.E., Aydin, A., Karimi-Fard, M., Durlofsky, L.J., Sagy, A., Brodsky, E.E., Kreylos, O., Kellogg, L.H., From outcrop to flow simulation: Constructing discrete fracture models from a LIDAR survey (2011) AAPG Bulletin, 95 (11), pp. 1883-1905. , https://doi.org/10.1306/03241108148 
504 |a Woodcock, N.H., Specification of fabric shapes using an eigenvalue method (1977) Geological Society of America Bulletin, 88 (9), pp. 1231-1236. , https://doi.org/10.1130/0016-7606(1977)88<1231:SOFSUA>2.0.CO;2 
504 |a Yamaji, A., Sato, K., Tonai, S., Stochastic modeling for the stress inversion of vein orientations: Paleostress analysis of Pliocene epithermal veins in southwestern Kyushu, Japan (2010) Journal of Structural Geology, 32 (8), pp. 1137-1146. , https://doi.org/10.1016/j.jsg.2010.07.001 
506 |2 openaire  |e Política editorial 
520 3 |a The fitting of a plane to data points is essential to the geosciences. However, it is recognized that the reliability of these best fit planes depends upon the point set distribution and geometry, evaluated in terms of the eigen-based parameters derived from the moment of inertia analysis. Despite its significance, few studies have addressed the uncertainties of the analysis, which can adversely affect the reproduction of results one of the cornerstones of scientific endeavor. Aiming to contribute toward the neglected issue of the moment of inertia precision, we have developed a bootstrap resampling scheme to empirically discover the distribution of uncertainties in the orientation of best fit planes. Dispersion of the bootstrapped normal vectors to the best fit plane is regarded as a measure of precision, evaluated with the maximum angular distance from the optimal solution. This rationale was tested using Monte Carlo-generated samples covering a comprehensive range of shape parameters to assess the dependence between eigen parameters and their inherent bias. Our results show that the oblateness of the point cloud is a robust parameter to assess the reliability of the best fit plane. Given this, the method was then applied to a publicly available lidar data set. We argue that georeferenced point clouds with an oblateness parameter greater than 3 and 1.5 may be placed at 95% confidence levels of 5° and 10°, respectively. We propose using these values as thresholds to obtain robust best fit planes, guaranteeing reproducible results for scientific research. ©2018. American Geophysical Union. All Rights Reserved.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: We thank the Universidad de Buenos Aires (UBA) and CONICET for the funding that enabled the conduction of these studies and L.C.G. Doctoral Grant. E. O. C. acknowledges founding from PICT 2013-1309 and BACYT 20020130100613BA. T. D. Seers provided an insightful and helpful review; we are very grateful. We also thank the Editor, Paul Tregoning; the Associate Editor, Andy Hooper; and an anonymous reviewer. The authors would like to thank Renata N. Tomezzoli for constructive discussions. The data used are available in tables, cited references, and supporting information. 
593 |a Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires, Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina 
593 |a Laboratorio de Modelado Geológico, Instituto de Estudios Andinos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Laboratorio de Termocronología (La.Te Andes), Consejo Nacional de Investigaciones Científicas y Técnicas, Salta, Argentina 
593 |a Departamento de Matemática y Ciencias, Universidad de San AndrésVIC, Argentina 
650 1 7 |2 spines  |a PRECISION 
690 1 0 |a BEST FIT PLANE 
690 1 0 |a BOOTSTRAP STATISTICS 
690 1 0 |a MOMENT OF INERTIA ANALYSIS 
690 1 0 |a MONTE CARLO SIMULATION 
690 1 0 |a ORIENTATION OF STRUCTURAL HETEROGENEITIES 
690 1 0 |a BOOTSTRAPPING 
690 1 0 |a INERTIA 
690 1 0 |a MONTE CARLO ANALYSIS 
690 1 0 |a SIMULATION 
690 1 0 |a THRESHOLD 
700 1 |a Cristallini, Ernesto Osvaldo 
700 1 |a Svarc, M. 
773 0 |d Blackwell Publishing Ltd, 2018  |g v. 123  |h pp. 10,297-10,308  |k n. 11  |p J. Geophys. Res. Solid Earth  |x 21699313  |w (AR-BaUEN)CENRE-151  |t Journal of Geophysical Research: Solid Earth 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057790725&doi=10.1029%2f2018JB016319&partnerID=40&md5=8fc15d08719e3e73acf022ad99fec679  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1029/2018JB016319  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_21699313_v123_n11_p10,297_Gallo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_21699313_v123_n11_p10,297_Gallo  |y Registro en la Biblioteca Digital 
961 |a paper_21699313_v123_n11_p10,297_Gallo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85932