Regulated Necrosis Orchestrates Microglial Cell Death in Manganese-Induced Toxicity

Microglia, the brain resident immune cells, play prominent roles in immune surveillance, tissue repair and neural regeneration. Despite these pro-survival actions, the relevance of these cells in the progression of several neuropathologies has been established. In the context of manganese (Mn) overe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Porte Alcon, S.
Otros Autores: Gorojod, R.M, Kotler, M.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2018
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 32881caa a22024857a 4500
001 PAPER-24963
003 AR-BaUEN
005 20230518205654.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85055483076 
024 7 |2 cas  |a cathepsin D, 9025-26-7; manganese, 16397-91-4, 7439-96-5; Manganese; Reactive Oxygen Species 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a NRSCD 
100 1 |a Porte Alcon, S. 
245 1 0 |a Regulated Necrosis Orchestrates Microglial Cell Death in Manganese-Induced Toxicity 
260 |b Elsevier Ltd  |c 2018 
270 1 0 |m Kotler, M.L.Avda. Intendente Güiraldes 2160, Ciudad Universitaria, Argentina; email: kotler@qb.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Aits, S., Jäättelä, M., Lysosomal cell death at a glance (2013) J Cell Sci, 126, pp. 1905-1912 
504 |a Alaimo, A., Gorojod, R.M., Beauquis, J., Muñoz, M.J., Saravia, F., Kotler, M.L., Deregulation of mitochondria-shaping proteins Opa-1 and Drp-1 in manganese-induced apoptosis (2014) PLoS One, 9 
504 |a Alaimo, A., Gorojod, R.M., Kotler, M.L., The extrinsic and intrinsic apoptotic pathways are involved in manganese toxicity in rat astrocytoma C6 cells (2011) Neurochem Int, 59, pp. 297-308 
504 |a Andrabi, S.A., Dawson, T.M., Dawson, V.L., Mitochondrial and nuclear cross talk in cell death: parthanatos (2008) Ann N Y Acad Sci, 1147, pp. 233-241 
504 |a Andrabi, S.A., Kim, N.S., Yu, S.W., Wang, H., Koh, D.W., Sasaki, M., Klaus, J.A., Dawson, T.M., Poly(ADP-ribose) (PAR) polymer is a death signal (2006) Proc Natl Acad Sci U S A, 103, pp. 18308-18313 
504 |a Aschner, M., Dorman, D.C., Manganese: pharmacokinetics and molecular mechanisms of brain uptake (2006) Toxicol Rev, 25, pp. 147-154 
504 |a Aschner, M., Guilarte, T.R., Schneider, J.S., Zheng, W., Manganese: recent advances in understanding its transport and neurotoxicity (2007) Toxicol Appl Pharmacol, 221, pp. 131-147 
504 |a Bae, J.H., Jang, B.C., Suh, S.I., Ha, E., Baik, H.H., Kim, S.S., Lee, M., Shin, D.H., Manganese induces inducible nitric oxide synthase (iNOS) expression via activation of both MAP kinase and PI3K/Akt pathways in BV2 microglial cells (2006) Neurosci Lett, 398, pp. 151-154 
504 |a Blasi, E., Barluzzi, R., Bocchini, V., Mazzolla, R., Bistoni, F., Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus (1990) J Neuroimmunol, 27, pp. 229-237 
504 |a Bocchini, V., Mazzolla, R., Barluzzi, R., Blasi, E., Sick, P., Kettenmann, H., An immortalized cell line expresses properties of activated microglial cells (1992) J Neurosci Res, 31, pp. 616-621 
504 |a Bornhorst, J., Meyer, S., Weber, T., Böker, C., Marschall, T., Mangerich, A., Beneke, S., Schwerdtle, T., Molecular mechanisms of Mn induced neurotoxicity: RONS generation, genotoxicity, and DNA-damage response (2013) Mol Nutr Food Res, 57, pp. 1255-1269 
504 |a Bornhorst, J., Schwerdtle, T., Chapter 24: DNA damage induced by manganese (2015) Manganese in health and disease, issues in toxicology, pp. 604-620. , The Royal Society of Chemistry Cambridge, UK 
504 |a Boujrad, H., Gubkina, O., Robert, N., Krantic, S., Susin, S.A., AIF-mediated programmed necrosis: a highly regulated way to die (2007) Cell Cycle, 6, pp. 2612-2619 
504 |a Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254 
504 |a Burguillos, M.A., Deierborg, T., Kavanagh, E., Persson, A., Hajji, N., Garcia-Quintanilla, A., Cano, J., Joseph, B., Caspase signalling controls microglia activation and neurotoxicity (2011) Nature, 472, pp. 319-324 
504 |a Bussi, C., Ramos, J.M.P., Arroyo, D.S., Gaviglio, E.A., Gallea, J.I., Wang, J.M., Celej, M.S., Iribarren, P., Autophagy down regulates pro-inflammatory mediators in BV2 microglial cells and rescues both LPS and alpha-synuclein induced neuronal cell death (2017) Sci Rep, 7, p. 43153 
504 |a Butterworth, J., Changes in nine enzyme markers for neurons, glia, and endothelial cells in agonal state and Huntington's disease caudate nucleus (1986) J Neurochem, 47, pp. 583-587 
504 |a Candé, C., Vahsen, N., Garrido, C., Kroemer, G., Apoptosis-inducing factor (AIF): caspase-independent after all (2004) Cell Death Differ, 11, pp. 591-595 
504 |a Cersosimo, M.G., Koller, W.C., The diagnosis of manganese-induced parkinsonism (2006) Neurotoxicology, 27, pp. 340-346 
504 |a Chaitanya, G.V., Babu, P.P., Multiple apoptogenic proteins are involved in the nuclear translocation of Apoptosis Inducing Factor during transient focal cerebral ischemia in rat (2008) Brain Res, 1246, pp. 178-190 
504 |a Chaitanya, G.V., Steven, A.J., Babu, P.P., PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration (2010) Cell Commun Signal, 8, p. 31 
504 |a Chang, C., Lang, H., Geng, N., Wang, J., Li, N., Wang, X., Exosomes of BV-2 cells induced by alpha-synuclein: important mediator of neurodegeneration in PD (2013) Neurosci Lett, 548, pp. 190-195 
504 |a Chang, J.Y., Liu, L.Z., Manganese potentiates nitric oxide production by microglia (1999) Brain Res Mol Brain Res, 68, pp. 22-28 
504 |a Cheung, E., Melanson-Drapeau, L., Cregan, S., Vanderluit, J., Ferguson, K., McIntosh, W., Park, D., Slack, R., Apoptosis-inducing factor is a key factor in neuronal cell death propagated by BAX-dependent and BAX-independent mechanisms. – Semantic Scholar (2005) J Neurosci, 25, pp. 1324-1334 
504 |a Circu, M., Taw, T., Reactive oxygen species, cellular redox systems, and apoptosis (2010) Free Radical Biol Med, 48, pp. 749-762 
504 |a Connolly, P.F., Jäger, R., Fearnhead, H.O., New roles for old enzymes: killer caspases as the engine of cell behavior changes (2014) Front Physiol, 5, p. 149 
504 |a Couper, J., On the effects of black oxide of manganese when inhaled into the lungs (1837) Br Ann Med Pharmacol, 1, pp. 41-42 
504 |a Cummings, B.S., Wills, L.P., Schnellmann, R.G., Measurement of cell death in mammalian cells (2012) Curr Protoc Pharmacol, 12 (12), p. 8. , Chapter 12, Unit 12.8 
504 |a Dheen, S.T., Kaur, C., Ling, E.-A., Microglial activation and its implications in the brain diseases (2007) Curr Med Chem, 14, pp. 1189-1197 
504 |a Dodd, C.A., Filipov, N.M., Manganese potentiates LPS-induced heme-oxygenase 1 in microglia but not dopaminergic cells: role in controlling microglial hydrogen peroxide and inflammatory cytokine output (2011) Neurotoxicology, 32, pp. 683-692 
504 |a Dorstyn, L., Puccini, J., Wilson, C.H., Shalini, S., Nicola, M., Moore, S., Kumar, S., Caspase-2 deficiency promotes aberrant DNA-damage response and genetic instability (2012) Cell Death Differ, 19, pp. 1288-1298 
504 |a Erikson, K.M., Aschner, M., Manganese neurotoxicity and glutamate-GABA interaction (2003) Neurochem Int, 43, pp. 475-480 
504 |a Erikson, K.M., Syversen, T., Aschner, J.L., Aschner, M., Interactions between excessive manganese exposures and dietary iron-deficiency in neurodegeneration (2005) Environ Toxicol Pharmacol, 19, pp. 415-421 
504 |a Fan, X., Luo, G., Yang, D., Ming, M., Liu, H., Pu, P., Le, W., Critical role of lysosome and its associated protein cathepsin D in manganese-induced toxicity in cultured midbrain astrocyte (2010) Neurochem Int, 56, pp. 291-300 
504 |a Fatokun, A.A., Dawson, V.L., Dawson, T.M., Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities (2014) Br J Pharmacol, 171, pp. 2000-2016 
504 |a Fenech, M., Kirsch-Volders, M., Natarajan, A.T., Surralles, J., Crott, J.W., Parry, J., Norppa, H., Thomas, P., Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells (2011) Mutagenesis, 26, pp. 125-132 
504 |a Ferrara, G., Gambelunghe, A., Mozzi, R., Marchetti, M.C., Migliorati, G., Muzi, G., Buratta, S., Phosphatidylserine metabolism modification precedes manganese-induced apoptosis and phosphatidylserine exposure in PC12 cells (2013) Neurotoxicology, 39, pp. 25-34 
504 |a Filipov, N.M., Seegal, R.F., Lawrence, D.A., Manganese potentiates in vitro production of proinflammatory cytokines and nitric oxide by microglia through a nuclear factor kappa B-dependent mechanism (2005) Toxicol Sci, 84, pp. 139-148 
504 |a Forsberg, J., Zhivotovsky, B., Olsson, M., Caspase-2: an orphan enzyme out of the shadows (2017) Oncogene, 36, pp. 5441-5444 
504 |a Galli, S., Jahn, O., Hitt, R., Hesse, D., Opitz, L., Plessmann, U., Urlaub, H., Jovin, T.M., A new paradigm for MAPK: structural interactions of hERK1 with mitochondria in HeLa cells (2009) PLoS One, 4 
504 |a Galluzzi, L., Bravo-San Pedro, J.M., Vitale, I., Aaronson, S.A., Abrams, J.M., Essential versus accessory aspects of cell death: recommendations of the NCCD 2015 (2015) Cell Death Differ, 22, pp. 58-73 
504 |a Gandhi, D., Sivanesan, S., Kannan, K., Manganese-induced neurotoxicity and alterations in gene expression in human neuroblastoma SH-SY5Y cells (2018) Biol Trace Elem Res, 183, pp. 245-253 
504 |a Gavin, C.E., Gunter, K.K., Gunter, T.E., Manganese and calcium transport in mitochondria: implications for manganese toxicity (1999) Neurotoxicology, 20, pp. 445-453 
504 |a Gobeil, S., Boucher, C.C., Nadeau, D., Poirier, G.G., Characterization of the necrotic cleavage of poly(ADP-ribose) polymerase (PARP-1): implication of lysosomal proteases (2001) Cell Death Differ, 8, pp. 588-594 
504 |a Gonzalez, L.E., Juknat, A.A., Venosa, A.J., Verrengia, N., Kotler, M.L., Manganese activates the mitochondrial apoptotic pathway in rat astrocytes by modulating the expression of proteins of the Bcl-2 family (2008) Neurochem Int, 53, pp. 408-415 
504 |a Gordon, R., Singh, N., Lawana, V., Ghosh, A., Harischandra, D.S., Jin, H., Hogan, C., Kanthasamy, A., Protein kinase Cδ upregulation in microglia drives neuroinflammatory responses and dopaminergic neurodegeneration in experimental models of Parkinson's disease (2016) Neurobiol Dis, 93, pp. 96-114 
504 |a Gorojod, R.M., Alaimo, A., Porte Alcon, S., Pomilio, C., Saravia, F., Kotler, M.L., The autophagic-lysosomal pathway determines the fate of glial cells under manganese-induced oxidative stress conditions (2015) Free Radical Biol Med, 87, pp. 237-251 
504 |a Gorojod, R.M., Alaimo, A., Porte Alcon, S., Saravia, F., Kotler, M.L., Interplay between lysosomal, mitochondrial and death receptor pathways during manganese-induced apoptosis in glial cells (2017) Arch Toxicol, 91, pp. 3065-3078 
504 |a Henn, A., Lund, S., Hedtjärn, M., Schrattenholz, A., Pörzgen, P., Leist, M., The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation (2009) ALTEX, 26, pp. 83-94 
504 |a Higashi, Y., Asanuma, M., Miyazaki, I., Hattori, N., Mizuno, Y., Ogawa, N., Parkin attenuates manganese-induced dopaminergic cell death (2004) J Neurochem, 89, pp. 1490-1497 
504 |a Hirata, Y., Manganese-induced apoptosis in PC12 cells (2002) Neurotoxicol Teratol, 24, pp. 639-653 
504 |a Hirata, Y., Adachi, K., Kiuchi, K., Activation of JNK pathway and induction of apoptosis by manganese in PC12 cells (1998) J Neurochem, 71, pp. 1607-1615 
504 |a Hirata, Y., Furuta, K., Miyazaki, S., Suzuki, M., Kiuchi, K., Anti-apoptotic and pro-apoptotic effect of NEPP11 on manganese-induced apoptosis and JNK pathway activation in PC12 cells (2004) Brain Res, 1021, pp. 241-247 
504 |a Hivert, B., Cerruti, C., Camu, W., Hydrogen peroxide-induced motoneuron apoptosis is prevented by poly ADP ribosyl synthetase inhibitors (1998) NeuroReport, 9, pp. 1835-1838 
504 |a Hurley, L., Keen, C., Manganese (1987) Trace elements in human and animal nutrition, , 5th ed. Academic Press San Diego, USA 
504 |a Jana, M., Mondal, S., Jana, A., Pahan, K., Interleukin-12 (IL-12), but not IL-23, induces the expression of IL-7 in microglia and macrophages: implications for multiple sclerosis (2014) Immunology, 141, pp. 549-563 
504 |a Jiang, J.K., Ma, X., Wu, Q.Y., Qian, W.B., Wang, N., Shi, S.S., Han, J.L., Wan, C.H., Upregulation of mitochondrial protease HtrA2/Omi contributes to manganese-induced neuronal apoptosis in rat brain striatum (2014) Neuroscience, 268, pp. 169-179 
504 |a Kirkley, K., Popichak, K., Afzali, M., Legare, M., Tjalkens, R., Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity (2017) J Neuroinflammation, 14, p. 99 
504 |a Kreutzberg, G.W., Microglia: a sensor for pathological events in the CNS (1996) Trends Neurosci, 19, pp. 312-318 
504 |a Kroemer, G., Galluzzi, L., Brenner, C., Mitochondrial membrane permeabilization in cell death (2007) Physiol Rev, 87, pp. 99-163 
504 |a Krysko, D.V., Vanden Berghe, T., D'Herde, K., Vandenabeele, P., Apoptosis and necrosis: detection, discrimination and phagocytosis (2008) Methods, 44, pp. 205-221 
504 |a Laakko, T., King, L., Fraker, P., Versatility of merocyanine 540 for the flow cytometric detection of apoptosis in human and murine cells (2002) J Immunol Methods, 261, pp. 129-139 
504 |a Li, Y., Sun, L., Cai, T., Zhang, Y., Lv, S., Wang, Y., Ye, L., Alpha-Synuclein overexpression during manganese-induced apoptosis in SH-SY5Y neuroblastoma cells (2010) Brain Res Bull, 81, pp. 428-433 
504 |a Lin, H.-C., Song, T.-Y., Hu, M.-L., S-Adenosylhomocysteine enhances DNA damage through increased β-amyloid formation and inhibition of the DNA-repair enzyme OGG1b in microglial BV-2 cells (2011) Toxicology, 290, pp. 342-349 
504 |a Lin, P.-Y., Yang, T.-H., Lin, H.-G., Hu, M.-L., Synergistic effects of S-adenosylhomocysteine and homocysteine on DNA damage in a murine microglial cell line (2007) Clin Chim Acta, 379, pp. 139-144 
504 |a Liu, B., Modulation of microglial pro-inflammatory and neurotoxic activity for the treatment of Parkinson's disease (2006) AAPS J, 8, pp. E606-E621 
504 |a Liu, C.-C., Ho, W.-Y., Leu, K.-L., Tsai, H.-M., Yang, T.-H., Effects of S-adenosylhomocysteine and homocysteine on DNA damage and cell cytotoxicity in murine hepatic and microglia cell lines (2009) J Biochem Mol Toxicol, 23, pp. 349-356 
504 |a Liu, Y., Barber, D.S., Zhang, P., Liu, B., Complex II of the mitochondrial respiratory chain is the key mediator of divalent manganese-induced hydrogen peroxide production in microglia (2013) Toxicol Sci, 132, pp. 298-306 
504 |a Lopez de Lapuente, A., Feliú, A., Ugidos, N., Mecha, M., Mena, J., Astobiza, I., Riera, J., Vandenbroeck, K., Novel insights into the multiple sclerosis risk gene ANKRD55 (2016) J Immunol, 196, pp. 4553-4565 
504 |a Love, S., Barber, R., Wilcock, G.K., Increased poly(ADP-ribosyl)ation of nuclear proteins in Alzheimer's disease (1999) Brain, 122, pp. 247-253 
504 |a Lull, M.E., Block, M.L., Microglial activation and chronic neurodegeneration (2010) Neurotherapeutics, 7, pp. 354-365 
504 |a Lund, S., Christensen, K.V., Hedtjärn, M., Mortensen, A.L., Hagberg, H., Falsig, J., Hasseldam, H., Leist, M., The dynamics of the LPS triggered inflammatory response of murine microglia under different culture and in vivo conditions (2006) J Neuroimmunol, 180, pp. 71-87 
504 |a Ma, Z., Wang, C., Liu, C., Yan, D.-Y., Deng, Y., Liu, W., Yang, T.-Y., Xu, B., The role S-nitrosylation in manganese-induced autophagy dysregulation in SH-SY5Y cells (2017) Environ Toxicol, 32, pp. 2428-2439 
504 |a Maddirala, Y., Tobwala, S., Ercal, N., N-acetylcysteineamide protects against manganese-induced toxicity in SHSY5Y cell line (2015) Brain Res, 1608, pp. 157-166 
504 |a Mah, L.J., El-Osta, A., Karagiannis, T.C., gammaH2AX: a sensitive molecular marker of DNA damage and repair (2010) Leukemia, 24, pp. 679-686 
504 |a Malecki, E.A., Manganese toxicity is associated with mitochondrial dysfunction and DNA fragmentation in rat primary striatal neurons (2001) Brain Res Bull Metals Brain, 55, pp. 225-228 
504 |a Mandir, A.S., Przedborski, S., Jackson-Lewis, V., Wang, Z.Q., Simbulan-Rosenthal, C.M., Smulson, M.E., Hoffman, B.E., Dawson, T.M., Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism (1999) Proc Natl Acad Sci U S A, 96, pp. 5774-5779 
504 |a Martinez-Finley, E.J., Gavin, C.E., Aschner, M., Gunter, T.E., Manganese neurotoxicity and the role of reactive oxygen species (2013) Free Radical Biol Med, 62, pp. 65-75 
504 |a Mauriz, J.L., Collado, P.S., Veneroso, C., Reiter, R.J., González-Gallego, J., A review of the molecular aspects of melatonin's anti-inflammatory actions: recent insights and new perspectives (2013) J Pineal Res, 54, pp. 1-14 
504 |a Miramar, M.D., Costantini, P., Ravagnan, L., Saraiva, L.M., Haouzi, D., Brothers, G., Penninger, J.M., Susin, S.A., NADH oxidase activity of mitochondrial apoptosis-inducing factor (2001) J Biol Chem, 276, pp. 16391-16398 
504 |a Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays (1983) J Immunol Methods, 65, pp. 55-63 
504 |a Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menissier-de Murcia, J., Susin, S.A., Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis (2007) Mol Cell Biol, 27, pp. 4844-4862 
504 |a Nayak, D., Roth, T.L., McGavern, D.B., Microglia development and function (2014) Annu Rev Immunol, 32, pp. 367-402 
504 |a Nguyen, M.D., Julien, J.P., Rivest, S., Innate immunity: the missing link in neuroprotection and neurodegeneration? (2002) Nat Rev Neurosci, 3, pp. 216-227 
504 |a Oh, S.H., Ryu, B., Ngo, D.H., Kim, W.-S., Kim, D.G., Kim, S.K., 4-hydroxybenzaldehyde-chitooligomers suppresses H 2 O 2 -induced oxidative damage in microglia BV-2 cells (2017) Carbohydr Res, 440-441, pp. 32-37 
504 |a O'Neal, S.L., Zheng, W., Manganese toxicity upon overexposure: a decade in review (2015) Curr Environ Health Rpt, 2, pp. 315-328 
504 |a Oikawa, S., Hirosawa, I., Tada-Oikawa, S., Furukawa, A., Nishiura, K., Kawanishi, S., Mechanism for manganese enhancement of dopamine-induced oxidative DNA damage and neuronal cell death (2006) Free Radical Biol Med, 41, pp. 748-756 
504 |a Outeiro, T.F., Grammatopoulos, T.N., Altmann, S., Amore, A., Standaert, D.G., Hyman, B.T., Kazantsev, A.G., Pharmacological inhibition of PARP-1 reduces alpha-synuclein- and MPP+-induced cytotoxicity in Parkinson's disease in vitro models (2007) Biochem Biophys Res Commun, 357, pp. 596-602 
504 |a Page, B., Page, M., Noel, C., A new fluorometric assay for cytotoxicity measurements in-vitro (1993) Int J Oncol, 3, pp. 473-476 
504 |a Pangestuti, R., Vo, T.-S., Ngo, D.-H., Kim, S.-K., Fucoxanthin ameliorates inflammation and oxidative responses in microglia (2013) J Agric Food Chem, 61, pp. 3876-3883 
504 |a Park, E., Chun, H.S., Protective effects of curcumin on manganese-induced BV-2 microglial cell death (2017) Biol Pharm Bull, 40, pp. 1275-1281 
504 |a Park, E., Chun, H.S., Melatonin attenuates manganese and lipopolysaccharide-induced inflammatory activation of BV2 microglia (2017) Neurochem Res, 42, pp. 656-666 
504 |a Park, E.-J., Park, K., Induction of oxidative stress and inflammatory cytokines by manganese chloride in cultured T98G cells, human brain glioblastoma cell line (2010) Toxicol In Vitro, 24, pp. 472-479 
504 |a Peres, T.V., Schettinger, M.R.C., Chen, P., Carvalho, F., Avila, D.S., Bowman, A.B., Aschner, M., Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies (2016) BMC Pharmacol Toxicol, 17, p. 57 
504 |a Porte Alcon, S., Alaimo, A., Gorojod, R.M., Kotler, M.L., Vías de muerte celular inducida por Mn en células microgliales BV2 (2015) Medicina, 75 (2), p. 108 
504 |a Porte Alcon, S., Miglietta, E.A., Gorojod, R.M., Alaimo, A., Kotler, M.L., El manganeso induce muerte celular y activación de las células microgliales murinas BV2 (2014) Medicina, 74 (3), p. 175 
504 |a Prabhakaran, K., Chapman, G.D., Gunasekar, P.G., BNIP3 up-regulation and mitochondrial dysfunction in manganese-induced neurotoxicity (2009) Neurotoxicology, 30, pp. 414-422 
504 |a Puli, S., Lai, J.C.K., Edgley, K.L., Daniels, C.K., Bhushan, A., Signaling pathways mediating manganese-induced toxicity in human glioblastoma cells (u87) (2006) Neurochem Res, 31, pp. 1211-1218 
504 |a Qin, Y., Sun, X., Shao, X., Cheng, C., Feng, J., Sun, W., Gu, D., Duan, Y., Macrophage-microglia networks drive M1 microglia polarization after mycobacterium infection (2015) Inflammation, 38, pp. 1609-1616 
504 |a Reiter, R., Mayo, J., Tan, D., Sainz, R., Alatorre-Jimenez, M., Qin, L., Melatonin as an antioxidant: under promises but over delivers (2016) J Pineal Res, 61, pp. 253-278 
504 |a Rojo, A.I., McBean, G., Cindric, M., Egea, J., López, M.G., Rada, P., Zarkovic, N., Cuadrado, A., Redox control of microglial function: molecular mechanisms and functional significance (2014) Antioxid Redox Signal, 21, pp. 1766-1801 
504 |a Roth, J.A., Are there common biochemical and molecular mechanisms controlling manganism and parkisonism (2009) Neuromol Med, 11, pp. 281-296 
504 |a Sava, V., Mosquera, D., Song, S., Cardozo-Pelaez, F., Sánchez-Ramos, J.R., Effects of melanin and manganese on DNA damage and repair in PC12-derived neurons (2004) Free Radical Biol Med, 36, pp. 1144-1154 
504 |a Seo, Y.A., Li, Y., Wessling-Resnick, M., Iron depletion increases manganese uptake and potentiates apoptosis through ER stress (2013) Neurotoxicology, 38, pp. 67-73 
504 |a Serrano-Puebla, A., Boya, P., Lysosomal membrane permeabilization in cell death: new evidence and implications for health and disease (2016) Ann N Y Acad Sci, 1371, pp. 30-44 
504 |a Shen, Y., McMackin, M.Z., Shan, Y., Raetz, A., David, S., Cortopassi, G., Frataxin deficiency promotes excess microglial DNA damage and inflammation that is rescued by PJ34 (2016) PLoS One, 11 
504 |a Smith, M.R., Fernandes, J., Go, Y.M., Jones, D.P., Redox dynamics of manganese as a mitochondrial life-death switch (2017) Biochem Biophys Res Commun, 482, pp. 388-398 
504 |a Stansley, B., Post, J., Hensley, K., A comparative review of cell culture systems for the study of microglial biology in Alzheimer's disease (2012) J Neuroinflammation, 9, p. 115 
504 |a Stephenson, A.P., Schneider, J.A., Nelson, B.C., Atha, D.H., Jain, A., Soliman, K.F.A., Aschner, M., Renee Reams, R., Manganese-induced oxidative DNA damage in neuronal SH-SY5Y cells: attenuation of thymine base lesions by glutathione and N-acetylcysteine (2013) Toxicol Lett, 218, pp. 299-307 
504 |a Susin, S.A., Lorenzo, H.K., Zamzami, N., Marzo, I., Snow, B.E., Brothers, G.M., Mangion, J., Kroemer, G., Molecular characterization of mitochondrial apoptosis-inducing factor (1999) Nature, 397, pp. 441-446 
504 |a Tait, S.W.G., Green, D.R., Mitochondria and cell death: outer membrane permeabilization and beyond (2010) Nat Rev Mol Cell Biol, 11, pp. 621-632 
504 |a Tait, S.W.G., Ichim, G., Green, D.R., Die another way–non-apoptotic mechanisms of cell death (2014) J Cell Sci, 127, pp. 2135-2144 
504 |a Tamm, C., Sabri, F., Ceccatelli, S., Mitochondrial-mediated apoptosis in neural stem cells exposed to manganese (2008) Toxicol Sci, 101, pp. 310-320 
504 |a Tansey, M.G., Frank-Cannon, T.C., McCoy, M.K., Lee, J.K., Martinez, T.N., McAlpine, F.E., Ruhn, K.A., Tran, T.A., Neuroinflammation in Parkinson's disease: is there sufficient evidence for mechanism-based interventional therapy? (2008) Front Biosci, 13, pp. 709-717 
504 |a Tjalkens, R.B., Popichak, K.A., Kirkley, K.A., Inflammatory activation of microglia and astrocytes in manganese neurotoxicity (2017) Adv Neurobiol, 18, pp. 159-181 
504 |a Tu, J., Chen, B., Yang, L., Qi, K., Lu, J., Zhao, D., Amyloid-β activates microglia and regulates protein expression in a manner similar to prions (2015) J Mol Neurosci, 56, pp. 509-518 
504 |a Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H., Vandenabeele, P., Regulated necrosis: the expanding network of non-apoptotic cell death pathways (2014) Nat Rev Mol Cell Biol, 15, pp. 135-147 
504 |a Verina, T., Kiihl, S.F., Schneider, J.S., Guilarte, T.R., Manganese exposure induces microglia activation and dystrophy in the substantia nigra of non-human primates (2011) Neurotoxicology, 32, pp. 215-226 
504 |a Vis, J.C., Schipper, E., de Boer-van Huizen, R.T., Verbeek, M.M., de Waal, R.M.W., Wesseling, P., ten Donkelaar, H.J., Kremer, B., Expression pattern of apoptosis-related markers in Huntington's disease (2005) Acta Neuropathol, 109, pp. 321-328 
504 |a Yin, Z., Aschner, J.L., dos Santos, A.P., Aschner, M., Mitochondrial-dependent manganese neurotoxicity in rat primary astrocyte cultures (2008) Brain Res, 1203, pp. 1-11 
504 |a Yu, S.W., Andrabi, S.A., Wang, H., Kim, N.S., Poirier, G.G., Dawson, T.M., Dawson, V.L., Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death (2006) Proc Natl Acad Sci U S A, 103, pp. 18314-18319 
504 |a Yu, S.W., Wang, H., Poitras, M.F., Coombs, C., Bowers, W.J., Federoff, H.J., Poirier, G.G., Dawson, V.L., Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor (2002) Science, 297, pp. 259-263 
504 |a Yuste, V.J., Moubarak, R.S., Delettre, C., Bras, M., Sancho, P., Robert, N., d'Alayer, J., Susin, S.A., Cysteine protease inhibition prevents mitochondrial apoptosis-inducing factor (AIF) release (2005) Cell Death Differ, 12, pp. 1445-1448 
504 |a Zhang, H.T., Mi, L., Wang, T., Yuan, L., Li, X.H., Dong, L.S., Zhao, P., Zhou, Z.-C., PINK1/Parkin-mediated mitophagy play a protective role in manganese induced apoptosis in SH-SY5Y cells (2016) Toxicol In Vitro, 34, pp. 212-219 
504 |a Zhang, J., Dawson, V.L., Dawson, T.M., Snyder, S.H., Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity (1994) Science, 263, pp. 687-689 
504 |a Zhang, P., Hatter, A., Liu, B., Manganese chloride stimulates rat microglia to release hydrogen peroxide (2007) Toxicol Lett, 173, pp. 88-100 
504 |a Zhang, P., Lokuta, K.M., Turner, D.E., Liu, B., Synergistic dopaminergic neurotoxicity of manganese and lipopolysaccharide: differential involvement of microglia and astroglia (2010) J Neurochem, 112, pp. 434-443 
504 |a Zhang, P., Wong, T.A., Lokuta, K.M., Turner, D.E., Vujisic, K., Liu, B., Microglia enhance manganese chloride-induced dopaminergic neurodegeneration: role of free radical generation (2009) Exp Neurol, 217, pp. 219-230 
504 |a Zhao, F., Cai, T., Liu, M., Zheng, G., Luo, W., Chen, J., Manganese induces dopaminergic neurodegeneration via microglial activation in a rat model of manganism (2009) Toxicol Sci, 107, pp. 156-164 
504 |a Zheng, H., Sun, H., Dominguez-Punaro, M.D.L.C., Bai, X., Ji, S., Segura, M., Xu, J., Evaluation of the pathogenesis of meningitis caused by Streptococcus suis sequence type 7 using the infection of BV2 microglial cells (2013) J Med Microbiol, 62, pp. 360-368 
520 3 |a Microglia, the brain resident immune cells, play prominent roles in immune surveillance, tissue repair and neural regeneration. Despite these pro-survival actions, the relevance of these cells in the progression of several neuropathologies has been established. In the context of manganese (Mn) overexposure, it has been proposed that microglial activation contributes to enhance the neurotoxicity. However, the occurrence of a direct cytotoxic effect of Mn on microglial cells remains controversial. In the present work, we investigated the potential vulnerability of immortalized mouse microglial cells (BV-2) toward Mn 2+ , focusing on the signaling pathways involved in cell death. Evidence obtained showed that Mn 2+ induces a decrease in cell viability which is associated with reactive oxygen species (ROS) generation. In this report we demonstrated, for the first time, that Mn 2+ triggers regulated necrosis (RN) in BV-2 cells involving two central mechanisms: parthanatos and lysosomal disruption. The occurrence of parthanatos is supported by several cellular and molecular events: (i) DNA damage; (ii) AIF translocation from mitochondria to the nucleus; (iii) mitochondrial membrane permeabilization; and (iv) PARP1-dependent cell death. On the other hand, Mn 2+ induces lysosomal membrane permeabilization (LMP) and cathepsin D (CatD) release into the cytosol supporting the lysosomal disruption. Pre-incubation with CatB and D inhibitors partially prevented the Mn 2+ -induced cell viability decrease. Altogether these events point to lysosomes as players in the execution of RN. In summary, our results suggest that microglial cells could be direct targets of Mn 2+ damage. In this scenario, Mn 2+ triggers cell death involving RN pathways. © 2018 IBRO  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 0771, 0519 
536 |a Detalles de la financiación: This work was supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Grants PIP 0771 and 0519 ). The authors thank Dr. Alicia Baldessari (QO-FCEN-UBA, UMYMFOR-CONICET), Dr. Eduardo Canepa (QB-FCEN-UBA, IQUIBICEN-CONICET) and Dr. Nora Rotstein (BByF, UNS-INIBIBB-CONICET) for providing relevant materials. R.M.G. and S.P.A. are supported by a CONICET scholarships. M.L.K. is a researcher member at CONICET. 
593 |a CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina 
690 1 0 |a LYSOSOMES, REGULATED NECROSIS 
690 1 0 |a MANGANESE 
690 1 0 |a MANGANISM 
690 1 0 |a MICROGLIA 
690 1 0 |a PARTHANATOS 
690 1 0 |a CATHEPSIN D 
690 1 0 |a MANGANESE 
690 1 0 |a NICOTINAMIDE ADENINE DINUCLEOTIDE ADENOSINE DIPHOSPHATE RIBOSYLTRANSFERASE 1 
690 1 0 |a REACTIVE OXYGEN METABOLITE 
690 1 0 |a MANGANESE 
690 1 0 |a ANIMAL CELL 
690 1 0 |a APOPTOSIS 
690 1 0 |a ARTICLE 
690 1 0 |a CELL DEATH 
690 1 0 |a CELL DISRUPTION 
690 1 0 |a CELL STRUCTURE 
690 1 0 |a CELL VIABILITY 
690 1 0 |a DNA DAMAGE 
690 1 0 |a GENOTOXICITY 
690 1 0 |a HUMAN 
690 1 0 |a HUMAN CELL 
690 1 0 |a LYSOSOME 
690 1 0 |a MICROGLIA 
690 1 0 |a MTT ASSAY 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a SIGNAL TRANSDUCTION 
690 1 0 |a ANIMAL 
690 1 0 |a CELL DEATH 
690 1 0 |a CELL SURVIVAL 
690 1 0 |a DRUG EFFECT 
690 1 0 |a METABOLISM 
690 1 0 |a MICROGLIA 
690 1 0 |a MITOCHONDRION 
690 1 0 |a MOUSE 
690 1 0 |a ANIMALS 
690 1 0 |a APOPTOSIS 
690 1 0 |a CELL DEATH 
690 1 0 |a CELL SURVIVAL 
690 1 0 |a LYSOSOMES 
690 1 0 |a MANGANESE 
690 1 0 |a MICE 
690 1 0 |a MICROGLIA 
690 1 0 |a MITOCHONDRIA 
690 1 0 |a REACTIVE OXYGEN SPECIES 
650 1 7 |2 spines  |a NECROSIS 
650 1 7 |2 spines  |a NECROSIS 
700 1 |a Gorojod, R.M. 
700 1 |a Kotler, M.L. 
773 0 |d Elsevier Ltd, 2018  |g v. 393  |h pp. 206-225  |p Neuroscience  |x 03064522  |w (AR-BaUEN)CENRE-759  |t Neuroscience 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055483076&doi=10.1016%2fj.neuroscience.2018.10.006&partnerID=40&md5=f08324a36d710a6f213f88dad8aaec67  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.neuroscience.2018.10.006  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03064522_v393_n_p206_PorteAlcon  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03064522_v393_n_p206_PorteAlcon  |y Registro en la Biblioteca Digital 
961 |a paper_03064522_v393_n_p206_PorteAlcon  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 85916