Cell membrane electroporation modeling: A multiphysics approach

Electroporation-based techniques, i.e. techniques based on the perturbation of the cell membrane through the application of electric pulses, are widely used at present in medicine and biotechnology. However, the electric pulse - cell membrane interaction is not yet completely understood neither expl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Goldberg, E.
Otros Autores: Suárez, C., Alfonso, Mauricio, Marchese, J., Soba, Alejandro, Marshall, Guillermo Ricardo
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16721caa a22017657a 4500
001 PAPER-24930
003 AR-BaUEN
005 20251103081540.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85049459808 
024 7 |2 cas  |a calcium, 7440-70-2, 14092-94-5; chloride, 16887-00-6; Calcium; Chlorides 
030 |a BIOEF 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Goldberg, E. 
245 1 0 |a Cell membrane electroporation modeling: A multiphysics approach 
260 |b Elsevier B.V.  |c 2018 
270 1 0 |m Marshall, G.; Intendente Güiraldes 2160, INFIP, Pabellón I PB Ciudad Universitaria, Argentina; email: marshallg@arnet.com.ar 
504 |a Yarmush, M., Golberg, A., Sersa, G., Kotnik, T., Miklavcic, D., Electroporation-based technologies for medicine: principles, applications, and challenges (2014) Biomed. Eng., 16 (1), p. 295 
504 |a Venslauskas, M., Satkauskas, S., Mechanisms of transfer of bioactive molecules through the cell membrane by electroporation (2015) Eur. Biophys. J., 44 (5), pp. 277-289 
504 |a Knorr, D., Ade-Omowaye, B., Heinz, V., Nutritional improvement of plant foods by non-thermal processing (2002) Proc. Nutr. Soc., 61 (2), pp. 311-318 
504 |a Poyatos, J., Almecija, M., Garcia-Mesa, J., Munio, M., Hontoria, E., Torres, J., Osorio, F., Advanced methods for the elimination of microorganisms in industrial treatments: potential applicability to wastewater reuse (2011) Water Environ. Res., 83 (3), pp. 233-246 
504 |a Miklavcic, D., Handbook of Electroporation (2016), Springer International Publishing AG; Mir, L., Bases and rationale of the electrochemotherapy (2006) Eur. J. Cancer Suppl., 4 (11), pp. 38-44 
504 |a Miklavcic, D., Mali, B., Kos, B., Heller, R., Sersa, G., Electrochemotherapy: from the drawing board into medical practice (2014) Biomed. Eng. Online, 13 (1), p. 29 
504 |a Escoffre, J., Portet, T., Wasungu, L., Teissié, J., Dean, D., Rols, M., What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues (2009) Mol. Biotechnol., 41 (3), pp. 286-295 
504 |a Mir, L., Nucleic acids electrotransfer-based gene therapy (electrogenetherapy): past, current, and future (2009) Mol. Biotechnol., 43 (2), pp. 167-176 
504 |a Arena, C., Sano, M., Rossmeisl, J., Caldwell, J., Garcia, P., Rylander, M., Davalos, R., High-frequency irreversible electroporation (HFIRE) for non-thermal ablation without muscle contraction (2011) Biomed. Eng. Online, 10 (1), p. 102 
504 |a Wagstaff, P., Buijs, M., van den Bos, W., de Bruin, D., Zondervan, P., de la Rosette, J., Laguna Pes, M., Irreversible electroporation: state of the art (2016) Oncol. Targets Ther., 9, pp. 2437-2446 
504 |a Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P., The lipid bilayer (2007) Molecular Biology of the Cell, , 5th ed. Garland Science New York 
504 |a Pucihar, G., Kotnik, T., Valic, B., Miklavcic, D., Numerical determination of transmembrane voltage induced on irregularly shaped cells (2006) Ann. Biomed. Eng., 34 (4) 
504 |a Hu, Q., Joshi, R., Transmembrane voltage analyses in spheroidal cells in response to an intense ultrashort electrical pulse (2009) Phys. Rev. E, 79, p. 011901 
504 |a Kotnik, T., Pucihar, G., Miklavcic, D., Induced transmembrane voltage and its correlation with electroporation-mediated molecular transport (2010) J. Membr. Biol., 236 (1) 
504 |a Krassowska, W., Filev, P., Modeling electroporation in a single cell (2007) Biophys. J., 92 (2) 
504 |a Rems, L., Tarek, M., Casciola, M., Miklavcic, D., Properties of lipid electropores II: comparison of continuum-level modeling of pore conductance to molecular dynamics simulations (2016) Bioelectrochemistry, 112 
504 |a Pavlin, M., Leben, V., Miklavcic, D., Electroporation in dense cell suspension: theoretical and experimental analysis of ion diffusion and cell permeabilization (2007) Biochim. Biophys. Acta, Gen. Subj., 1770 (1) 
504 |a Pavlin, M., Miklavcic, D., Theoretical and experimental analysis of conductivity, ion diffusion and molecular transport during cell electroporation: relation between short-lived and long-lived pores (2008) Bioelectrochemistry, 74 (1) 
504 |a Zheng, Q., Chen, D., Wei, G., Second-order Poisson–Nernst–Planck solver for ion transport (2011) J. Comput. Phys., 230 (13) 
504 |a Li, J., Lin, H., Numerical simulation of molecular uptake via electroporation (2011) Bioelectrochemistry, 82 (1) 
504 |a Li, J., Tan, W., Yu, M., Lin, H., The effect of extracellular conductivity on electroporation-mediated molecular delivery (2013) Biochim. Biophys. Acta, 1828 
504 |a Jackson, J., Classical Electrodynamics (1962), 3th ed. John Wiley & Sons Inc; Mott, P., Dorgan, J., Roland, C., The bulk modulus and Poisson's ratio of “incompressible” materials (2008) J. Sound Vib., 312 (4) 
504 |a Portet, T., Mauroy, C., Démery, V., Houles, T., Escoffre, J.-M., Dean, D., Rols, M.-P., Destabilizing giant vesicles with electric fields: an overview of current applications (2012) J. Membr. Biol., 245 
504 |a Colombo, L., González, G., Marshall, G., Molina, F., Soba, A., Suárez, C., Turjanski, P., Ion transport in tumors under electrochemical treatment: in vivo, in vitro and in silico modeling (2007) Bioelectrochemistry, 71 (2) 
504 |a Turjanski, P., Olaiz, N., Abou-Adal, P., Suarez, C., Risk, M., Marshall, G., pH front tracking in the electrochemical treatment (EChT) of tumors: experiments and simulations (2009) Electrochim. Acta, 54 (26) 
504 |a Olaiz, N., Maglietti, F., Suárez, C., Molina, F., Miklavcic, D., Mir, L., Marshall, G., Electrochemical treatment of tumors using a one-probe two-electrode device (2010) Electrochim. Acta, 55 (20) 
504 |a Olaiz, N., Suárez, C., Risk, M., Molina, F., Marshall, G., Tracking protein electrodenaturation fronts in the electrochemical treatment of tumors (2010) Electrochem. Commun., 12 (1) 
504 |a Turjanski, P., Olaiz, N., Maglietti, F., Michinski, S., Suárez, C., Molina, F., Marshall, G., The role of pH fronts in reversible electroporation (2011) PLoS One, 6 (4) 
504 |a Maglietti, F., Michinski, S., Olaiz, N., Castro, M., Suárez, C., Marshall, G., The role of pH fronts in tissue electroporation-based treatments (2013) Plos One, 8 (11) 
504 |a Olaiz, N., Signori, E., Maglietti, F., Soba, A., Suárez, C., Turjanski, P., Marshall, G., Tissue damage modeling in gene electrotransfer: the role of pH (2014) Bioelectrochemistry, 100 
504 |a Humphries, S., Jr., Finite-element Methods for Electromagnetics (2010), 1st ed. CRC Press; Tsong, T., Electroporation of cell membranes (1991) Biophys. J., 60 (2), p. 297 
504 |a Hibino, M., Itoh, H., Kinosita, K., Time courses of cell electroporation as revealed by submicroscopic imaging of transmembrane potential (1993) Biophys. J., 64 
504 |a Zienkiewicz, O., Taylor, R., The Finite Element Method (Volume I: The Basis) (2000), 5th Ed Butterworth-Heinemann; Rao, S., The Finite Element Method in Engineering (2005), 4th ed. Butterworth-Heinemann Burlington; Dhatt, G., Lefrançois, E., Touzot, G., Finite Element Method (2012), John Wiley & Sons Hoboken; Marino, M., Olaiz, N., Signori, E., Maglietti, F., Suarez, C., Michinski, S., Marshall, G., pH fronts and tissue natural buffer interaction in gene electrotransfer protocols (2017) Electrochim. Acta 
504 |a Henon, S., Lenormand, G., Richert, A., Gallet, F., A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers (1999) Biophys. J., 76 (2) 
504 |a Hochmuth, R., Mohandas, N., Blackshear, P., Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique (1973) Biophys. J., 13 (8) 
504 |a McConnell, L., Miksis, M., Vlahovska, P., Continuum modeling of the electric-field-induced tension in deforming lipid vesicles (2015) J. Chem. Phys., 143 
504 |a Mauroy, C., Rico-Lattes, I., Teissie, J., Rois, M., Electric destabilization of supramolecular lipid vesicles subjected to fast electric pulses (2015) Langmuir, 31 (44) 
504 |a Engelhard, H., Sackmann, E., On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high-frequency electric fields (1988) Biophys. J., 54 
504 |a Gabriel, B., Teissie, J., Time courses of mammalian cell electropermeabilization observed by millisecond imaging of membrane property changes during the pulse (1999) Biophys. J., 76 (4) 
504 |a Pucihar, G., Kotnik, T., Miklavčič, D., Teissié, J., Kinetics of transmembrane transport of small molecules into electropermeabilized cells (2008) Biophys. J., 95 
504 |a Napotnik, T., Rebersek, M., Vernier, T., Mali, B., Miklavcic, D., Effects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): a systematic review (2016) Bioelectrochemistry, 110 
504 |a Nuccitelli, R., Tran, K., Huynh, J., Athos, B., Kreis, M., Nuccitelli, P., De Falbo, F., Non-thermal nanoelectroablation of UV-induced murine melanomas stimulates an immune response (2012) Pigment Cell Melanoma Res., 25 (5) 
504 |a Gabriel, B., Teissie, J., Generation of reactive oxygen species induced by electropermeabilization of Chinese hamster ovary cells and their consequence on cell viability (1994) Eur. J. Biochem., 223 (1) 
504 |a Maccarrone, M., Bladergroen, M., Rosato, N., Finazzi-Agro, A., Role of lipid peroxidation in electroporation-induced cell permeability (1995) Biochem. Biophys. Res. Commun., 209 (2) 
504 |a Vernier, P., Levine, Z., Wu, Y., Joubert, V., Ziegler, M., Mir, L., Tieleman, D., Electroporating fields target oxidatively damaged áreas in the cell membrane (2009) PLoS One, 4 (11) 
504 |a Stewart, D.A., Jr., Gowrishankar, T.R., Smith, K.C., Weaver, J.C., Cylindrical cell membranes in uniform applied electric fields: validation of a transport lattice method (2005) IEEE Trans. Biomed. Eng., 52, p. 10 
504 |a Leguèbe, M., Silve, A., Mir, L.M., Poignard, C., Conducting and permeable states of cell membrane submitted to high voltage pulses: mathematical and numerical studies validated by the experiments (2014) J. Theor. Biol., 360, pp. 83-94 
504 |a Kavian, O., Leguèbe, M., Poignard, C., Weynans, L., “Classical” Electropermeabilization modeling at the cell scale (2014) J. Math. Biol., 235-265 (2014), p. 68 
504 |a Neu, J., Krassowska, W., Singular perturbation analysis of the pore creation transient (2006) Phys. Rev. E, 74 (31917), pp. 1-9 
504 |a Voyer, D., Silve, A., Mir, L.M., Scorretti, R., Poignard, C., Dynamical modeling of tissue electroporation (2018) Bioelectrochemistry, 119, pp. 98-110 
506 |2 openaire  |e Política editorial 
520 3 |a Electroporation-based techniques, i.e. techniques based on the perturbation of the cell membrane through the application of electric pulses, are widely used at present in medicine and biotechnology. However, the electric pulse - cell membrane interaction is not yet completely understood neither explicitly formalized. Here we introduce a Multiphysics (MP) model describing electric pulse - cell membrane interaction consisting on the Poisson equation for the electric field, the Nernst-Planck equations for ion transport (protons, hydroxides, sodium or calcium, and chloride), the Maxwell tensor and mechanical equilibrium equation for membrane deformations (with an explicit discretization of the cell membrane), and the Smoluchowski equation for membrane permeabilization. The MP model predicts that during the application of an electric pulse to a spherical cell an elastic deformation of its membrane takes place affecting the induced transmembrane potential, the pore creation dynamics and the ionic transport. Moreover, the coincidence among maximum membrane deformation, maximum pore aperture, and maximum ion uptake is predicted. Such behavior has been corroborated experimentally by previously published results in red blood and CHO cells as well as in supramolecular lipid vesicles. © 2018  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, 2014/17 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 379/12-17 
536 |a Detalles de la financiación: TD 1104 
536 |a Detalles de la financiación: European Cooperation in Science and Technology 
536 |a Detalles de la financiación: E. Goldberg has a scholarship from Comisión Nacional de Energía Atómica. C. Suárez, A. Soba, and G. Marshall are researchers at the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). This work was supported by grants from CONICET PIP 379/12-17 , Universidad de Buenos Aires UBACyT 2014/17 , and the International European Cooperation in Science and Technology ( COST Action TD 1104 ). The funders had no role in the study, design, data collection, analysis, decision to publish, or preparation of the manuscript. 
593 |a Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina 
593 |a Laboratorio de Sistemas Complejos, Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Instituto de Física del Plasma, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina 
690 1 0 |a ELECTROCHEMOTHERAPY 
690 1 0 |a ELECTROPORATION 
690 1 0 |a ION TRANSPORT 
690 1 0 |a MATHEMATICAL MODELING 
690 1 0 |a MEMBRANE DEFORMATION 
690 1 0 |a BIOELECTRIC POTENTIALS 
690 1 0 |a CELLS 
690 1 0 |a CHLORINE COMPOUNDS 
690 1 0 |a ELECTRIC FIELDS 
690 1 0 |a IONS 
690 1 0 |a MATHEMATICAL MODELS 
690 1 0 |a MAXWELL EQUATIONS 
690 1 0 |a MEMBRANES 
690 1 0 |a POISSON EQUATION 
690 1 0 |a CELL MEMBRANE INTERACTIONS 
690 1 0 |a ELECTROCHEMOTHERAPY 
690 1 0 |a ELECTROPORATION 
690 1 0 |a ION TRANSPORTS 
690 1 0 |a MEMBRANE ELECTROPORATION 
690 1 0 |a MEMBRANE PERMEABILIZATION 
690 1 0 |a NERNST-PLANCK EQUATIONS 
690 1 0 |a TRANSMEMBRANE POTENTIALS 
690 1 0 |a CYTOLOGY 
690 1 0 |a ARTICLE 
690 1 0 |a BIOTECHNOLOGY 
690 1 0 |a CELL MEMBRANE 
690 1 0 |a CELL VOLUME 
690 1 0 |a CHO CELL LINE 
690 1 0 |a ELECTROCHEMOTHERAPY 
690 1 0 |a ELECTROPORATION 
690 1 0 |a ERYTHROCYTE 
690 1 0 |a ION TRANSPORT 
690 1 0 |a LIPID VESICLE 
690 1 0 |a MATHEMATICAL MODEL 
690 1 0 |a MEMBRANE POTENTIAL 
690 1 0 |a NONHUMAN 
690 1 0 |a ANIMAL 
690 1 0 |a BIOLOGICAL MODEL 
690 1 0 |a CELL MEMBRANE 
690 1 0 |a CRICETULUS 
690 1 0 |a ELECTROPORATION 
690 1 0 |a ERYTHROCYTE DEFORMABILITY 
690 1 0 |a METABOLISM 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a PROCEDURES 
690 1 0 |a CALCIUM 
690 1 0 |a CHLORIDE 
690 1 0 |a ANIMALS 
690 1 0 |a CALCIUM 
690 1 0 |a CELL MEMBRANE 
690 1 0 |a CHLORIDES 
690 1 0 |a CHO CELLS 
690 1 0 |a CRICETULUS 
690 1 0 |a ELECTROPORATION 
690 1 0 |a ERYTHROCYTE DEFORMABILITY 
690 1 0 |a ERYTHROCYTES 
690 1 0 |a ION TRANSPORT 
690 1 0 |a MEMBRANE POTENTIALS 
690 1 0 |a MODELS, BIOLOGICAL 
700 1 |a Suárez, C. 
700 1 |a Alfonso, Mauricio 
700 1 |a Marchese, J. 
700 1 |a Soba, Alejandro 
700 1 |a Marshall, Guillermo Ricardo 
773 0 |d Elsevier B.V., 2018  |g v. 124  |h pp. 28-39  |p Bioelectrochemistry  |x 15675394  |w (AR-BaUEN)CENRE-3947  |t Bioelectrochemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049459808&doi=10.1016%2fj.bioelechem.2018.06.010&partnerID=40&md5=ebb8e3fc567d391036baddff7fc1385c  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.bioelechem.2018.06.010  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15675394_v124_n_p28_Goldberg  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15675394_v124_n_p28_Goldberg  |y Registro en la Biblioteca Digital 
961 |a paper_15675394_v124_n_p28_Goldberg  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85883