2D Synthetic Emitter Array methodology for improving GPR reflections

Synthetic 1D-arrays of emitters are used in the area of GPR to improve primary reflections that in single-offset profiles show low continuity and amplitude due to the interference of clutter and noise. In this methodology, at each array position along the survey line, a series of single emitter-rece...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bullo, D.
Otros Autores: Bonomo, N.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09338caa a22008417a 4500
001 PAPER-24915
003 AR-BaUEN
005 20230518205651.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85053796458 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Bullo, D. 
245 1 0 |a 2D Synthetic Emitter Array methodology for improving GPR reflections 
260 |b Elsevier B.V.  |c 2018 
270 1 0 |m Bonomo, N.; IFIBA, CONICET - Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - IFIBA, CONICET, Ciudad UniversitariaArgentina; email: bonomo@df.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Arosio, D., Deparis, J., Zanzi, L., Garambois, S., Fracture characterization with GPR: A comparative study (2016) Proceedings of the16th International Conference of Ground Penetrating Radar, p. 7572679 
504 |a Berard, B., Maillol, J., Multi-offset ground penetrating radar data for improved imaging in areas of lateral complexity – applications at a Native American site (2007) J. Appl. Geophys., 62, pp. 167-177 
504 |a Bullo, D., Villela, A., Bonomo, N., Azimuth calculation for buried pipelines using a synthetic array of emitters, a single survey line and scattering matrix formalism (2016) J. Appl. Geophys., 134, pp. 253-266 
504 |a Cedrina, L., Bonomo, N., Osella, A., An application of the Synthetic Emitter-Array method to improve GPR signals (2010) J. Appl. Geophys., 70, pp. 237-244 
504 |a Cedrina, L., Bonomo, N., Osella, A., GPR-signal improvement using a synthetic emitter array (2011) J. Appl. Geophys., 74, pp. 123-130 
504 |a Forte, E., Pipan, M., Review of multi-offset GPR applications: data acquisition, processing and analysis (2017) Signal Process., 132, pp. 210-220 
504 |a Giannopoulos, A., Modelling ground penetrating radar by GprMax (2005) Constr. Build. Mater., 19, pp. 755-762 
504 |a Jacob, R., Urban, T., Ground-Penetrating Radar velocity determination and precision estimates using Common-Midpoint (CMP) collection with hand- picking, semblance analysis and cross-correlation analysis: a case study and tutorial for archaeologists (2016) Archaeometry, 58, pp. 987-1002 
504 |a Jol, H., Ground Penetrating Radar. Theory and Applications (2009), p. 524. , Elsevier Amsterdam; Kikuchi, K., Mikada, H., Takekawa, J., Applicability of Phased Array Antenna to Ground Penetrating Radar for Subsurface Imaging Below Surface Obstacles. 78 EAGE Conference and Exhibition: Efficient Use of Technology – Unlocking Potential. Th P3 06 (2016); Liu, H., Sato, M., In situ measurement of pavement thickness and dielectric permittivity by GPR using an antenna array (2014) NDT&E Int., 64, pp. 65-71 
504 |a Lutz, P., Perroud, H., Phased-array transmitters for GPR surveys (2006) J. Geophys. Eng., 3, pp. 35-42 
504 |a Martins, S., Travassos, J., Sacchi, M., Interpolating GPR Data Using Anti-Alias Singular Spectrum Analysis (SSA) Method. Near Surface Geophysics (2017), 15, pp. 447-455; Paglieroni, D., Chambers, D., Mast, J., Bond, S., Beer, N.R., Imaging modes for ground penetrating radar and their relation to detection performance (2015) IEEE J. Selected Topics Appl. Earth Observ. Remote Sensing, 8, pp. 1132-1144 
504 |a Sato, M., Takayama, T., High range resolution directional borehole radar for 3-D fracture delineation (2009) Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 1, pp. 132-135 
504 |a Sato, M., Yi, L., Iitsuka, Y., Zou, L., Takahashi, K., Optimization of antenna polarization of the multistatic GPR system Yakumo (2016) 16th International Conference of Ground Penetrating Radar, p. 7572664 
504 |a Yilmaz, Ö., Seismic data analysis: processing, inversion and interpretation of seismic data (2001), p. 2024. , 2nd ed. Society Exploration Geophysicists Tulsa; Zhao, S., Al-Qadi, I., Development of an analytic approach utilizing the extended common midpoint method to estimate asphalt pavement thickness with 3-D ground-penetrating gradar (2016) NDT&E Int., l78, pp. 29-36 
520 3 |a Synthetic 1D-arrays of emitters are used in the area of GPR to improve primary reflections that in single-offset profiles show low continuity and amplitude due to the interference of clutter and noise. In this methodology, at each array position along the survey line, a series of single emitter-receiver measurements is performed, keeping the position of the receiver constant and placing consecutively the emitter at the positions of the nodes of the array grid. A definite phase relation between the traces that constitute each common receiver gather is established and used to shift them in time with respect to the reference-offset trace, and the results are averaged. The phase relations are defined in order to superpose constructively the primary reflections, and reduce the random noise and clutter. The 1D synthetic procedure is equivalent to narrowing the transmitted electromagnetic wave-front along the direction of a real 1D array, which reduces the interference produced by reflectors located in formerly illuminated regions of the soil, and directing the field along an emitters-reflector-receiver path that maximizes the amplitude of the primary reflection at the position of the receiver with respect to the other reflections. In this article, a previously developed 1D-array method is extended to 2D-arrays, and the results of the 2D extension are analyzed and compared to the results of the 1D-array, Common-Midpoint and Single Offset techniques. The proposed 2D procedure considers a rectangular, homogeneous geometry for the array and a simple phase-relation between the component traces. In addition to directing the wave-front towards the target, these settings make possible to reduce the width of the wave-front along both axes of the array, which is expected to enhance the 1D results. Since the dimensionality increases in the 2D geometry, the number of traces in the summation grows significantly, which should also improve the final result. As a part of the 2D methodology, a variable that represents the reflection improvement, with respect to the Single Offset method, is defined and optimized as a function of the phase differences between adjacent traces along both directions of the array and the position of the emitters-receiver group along the survey line. A final data-section is generated from the optimal values found in this step. To evaluate the results of these methodologies, two basic types of reflections are analyzed: diffractions produced by small objects and reflections at extensive interfaces. Numerical and laboratory data are considered. The effects of different numbers of emitters and distances between them on the results are investigated, in order to obtain the best result. The 2D method shows noticeable enhancements of the continuity and amplitude of the primary reflection with respect to the other methods. © 2018 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: This work was partially supported by CONICET and ANPCYT . 
593 |a IFIBA, CONICET - Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - IFIBA, CONICET, Ciudad Universitaria, Buenos Aires, 1428, Argentina 
690 1 0 |a CLUTTER 
690 1 0 |a GPR 
690 1 0 |a NOISE 
690 1 0 |a PHASED ARRAY 
690 1 0 |a REFLECTION IMPROVEMENT 
690 1 0 |a SYNTHETIC EMITTER ARRAY 
690 1 0 |a ANTENNA PHASED ARRAYS 
690 1 0 |a CLUTTER (INFORMATION THEORY) 
690 1 0 |a ELECTROMAGNETIC WAVES 
690 1 0 |a GROUND PENETRATING RADAR SYSTEMS 
690 1 0 |a RADAR CLUTTER 
690 1 0 |a REFLECTION 
690 1 0 |a SURVEYS 
690 1 0 |a COMMON MID POINTS 
690 1 0 |a EMITTER ARRAYS 
690 1 0 |a GPR REFLECTION 
690 1 0 |a LABORATORY DATUM 
690 1 0 |a NOISE 
690 1 0 |a OPTIMAL VALUES 
690 1 0 |a PHASE DIFFERENCE 
690 1 0 |a SYNTHETIC PROCEDURES 
690 1 0 |a WAVEFRONTS 
690 1 0 |a DATA PROCESSING 
690 1 0 |a GEOMETRY 
690 1 0 |a GEOPHYSICAL ARRAY 
690 1 0 |a GROUND PENETRATING RADAR 
690 1 0 |a NOISE 
690 1 0 |a OPTIMIZATION 
690 1 0 |a PERFORMANCE ASSESSMENT 
700 1 |a Bonomo, N. 
773 0 |d Elsevier B.V., 2018  |g v. 159  |h pp. 285-293  |p J. Appl. Geophys.  |x 09269851  |w (AR-BaUEN)CENRE-5414  |t Journal of Applied Geophysics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053796458&doi=10.1016%2fj.jappgeo.2018.08.005&partnerID=40&md5=2fc3f7140ae4076e53a4fde8792167f5  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jappgeo.2018.08.005  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09269851_v159_n_p285_Bullo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09269851_v159_n_p285_Bullo  |y Registro en la Biblioteca Digital 
961 |a paper_09269851_v159_n_p285_Bullo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85868