Dynamics of non-convolution operators and holomorphy types

In this article we study the hypercyclic behavior of non-convolution operators defined on spaces of analytic functions of different holomorphy types over Banach spaces. The operators in the family we analyze are a composition of differentiation and composition operators, and are extensions of operat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Muro, S.
Otros Autores: Pinasco, D., Savransky, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Academic Press Inc. 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09302caa a22008777a 4500
001 PAPER-24894
003 AR-BaUEN
005 20230518205650.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85052931684 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Muro, S. 
245 1 0 |a Dynamics of non-convolution operators and holomorphy types 
260 |b Academic Press Inc.  |c 2018 
270 1 0 |m Muro, S.; Departamento de Matemática – Pab I, Facultad de Cs. Exactas y Naturales, Universidad de Buenos AiresArgentina; email: smuro@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Aron, R.M., Weakly uniformly continuous and weakly sequentially continuous entire functions (1979) Advances in Holomorphy, Proc. Sem. Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977, North-Holland Math. Stud., 34, pp. 47-66. , North-Holland Amsterdam 
504 |a Aron, R.M., Berner, P.D., A Hahn–Banach extension theorem for analytic mappings (1978) Bull. Soc. Math. France, 106 (1), pp. 3-24 
504 |a Aron, R.M., Bés, J., Hypercyclic differentiation operators (1999) Function Spaces, Edwardsville, IL, 1998, Contemp. Math., 232, pp. 39-46. , Amer. Math. Soc. Providence, RI 
504 |a Aron, R.M., Markose, D., Satellite Conference on Infinite Dimensional Function Theory, On universal functions (2004) J. Korean Math. Soc., 41 (1), pp. 65-76 
504 |a Bayart, F., Matheron, É., Mixing operators and small subsets of the circle (2016) J. Reine Angew. Math., 2016 (715), pp. 75-123 
504 |a Bertoloto, F.J., Botelho, G., Fávaro, V.V., Jatobá, A.M., Hypercyclicity of convolution operators on spaces of entire functions (2013) Ann. Inst. Fourier (Grenoble), 63 (4), pp. 1263-1283 
504 |a Birkhoff, G.D., Démonstration d'un théorème élémentaire sur les fonctions entières (1929) C. R. Acad. Sci. Paris, 189, pp. 473-475 
504 |a Bohr, H., A theorem concerning power series (1914) Proc. Lond. Math. Soc., 2 (1), pp. 1-5 
504 |a Bonilla, A., Grosse-Erdmann, K.-G., On a theorem of Godefroy and Shapiro (2006) Integral Equations Operator Theory, 56 (2), pp. 151-162 
504 |a Carando, D., Extendibility of polynomials and analytic functions on lp (2001) Studia Math., 145 (1), pp. 63-73 
504 |a Carando, D., Dimant, V., Muro, S., Hypercyclic convolution operators on Fréchet spaces of analytic functions (2007) J. Math. Anal. Appl., 336 (2), pp. 1324-1340 
504 |a Carando, D., Dimant, V., Muro, S., Coherent sequences of polynomial ideals on Banach spaces (2009) Math. Nachr., 282 (8), pp. 1111-1133 
504 |a Carando, D., Dimant, V., Muro, S., Holomorphic functions and polynomial ideals on Banach spaces (2012) Collect. Math., 63 (1), pp. 71-91 
504 |a Carando, D., Galicer, D., The symmetric Radon–Nikodym property for tensor norms (2011) J. Math. Anal. Appl., 375 (2), pp. 553-565 
504 |a Dimant, V., Galindo, P., Maestre, M., Zalduendo, I., Integral holomorphic functions (2004) Studia Math., 160 (1), pp. 83-99 
504 |a Dineen, S., Holomorphy types on a Banach space (1971) Studia Math., 39, pp. 241-288 
504 |a Dwyer, T.A.W., III, Partial differential equations in Fischer–Fock spaces for the Hilbert–Schmidt holomorphy type (1971) Bull. Amer. Math. Soc., 77, pp. 725-730 
504 |a Fávaro, V.V., Jatobá, A.M., Holomorphy types and spaces of entire functions of bounded type on Banach spaces (2009) Czechoslovak Math. J., 59 (4), pp. 909-927 
504 |a Fávaro, V.V., Jatobá, A.M., Hypercyclicity, existence and approximation results for convolution operators on spaces of entire functions (2018), arXiv preprint; Fávaro, V.V., Mujica, J., Hypercyclic convolution operators on spaces of entire functions (2016) J. Operator Theory, 76 (1), pp. 141-158 
504 |a Fávaro, V.V., Mujica, J., Convolution operators on spaces of entire functions (2018) Math. Nachr., 291 (1), pp. 41-54 
504 |a Fernández, G., Hallack, A.A., Remarks on a result about hypercyclic non-convolution operators (2005) J. Math. Anal. Appl., 309 (1), pp. 52-55 
504 |a Floret, K., Minimal ideals of n-homogeneous polynomials on Banach spaces (2001) Results Math., 39 (3-4), pp. 201-217 
504 |a Floret, K., On ideals of n-homogeneous polynomials on Banach spaces (2002) Topological Algebras with Applications to Differential Geometry and Mathematical Physics, Athens, 1999, pp. 19-38. , Univ. Athens Athens 
504 |a Godefroy, G., Shapiro, J.H., Operators with dense, invariant, cyclic vector manifolds (1991) J. Funct. Anal., 98 (2), pp. 229-269 
504 |a Gowers, W.T., Maurey, B., The unconditional basic sequence problem (1993) J. Amer. Math. Soc., 6 (4), pp. 851-874 
504 |a Gupta, C.P., On the Malgrange theorem for nuclearly entire functions of bounded type on a Banach space (1970) Nederl. Akad. Wetensch. Proc. Ser. A73 = Indag. Math., 32, pp. 356-358 
504 |a Gupta, M., Mundayadan, A., q-Frequently hypercyclic operators (2015) Banach J. Math. Anal., 9 (2), pp. 114-126 
504 |a Hallack, A.A., Hypercyclicity for translations through Runge's theorem (2007) Bull. Korean Math. Soc., 44 (1), pp. 117-123 
504 |a León-Saavedra, F., Romero-de la Rosa, P., Fixed points and orbits of non-convolution operators (2014) Fixed Point Theory Appl., 2014 (1) 
504 |a Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces I (1979), Springer-Verlag; MacLane, G.R., Sequences of derivatives and normal families (1952) J. Anal. Math., 2, pp. 72-87 
504 |a Murillo-Arcila, M., Peris, A., Strong mixing measures for linear operators and frequent hypercyclicity (2013) J. Math. Anal. Appl., 398 (2), pp. 462-465 
504 |a Muro, S., On algebras of holomorphic functions of a given type (2012) J. Math. Anal. Appl., 389 (2), pp. 792-811 
504 |a Muro, S., Pinasco, D., Savransky, M., Strongly mixing convolution operators on Fréchet spaces of holomorphic functions (2014) Integral Equations Operator Theory, 80 (4), pp. 453-468 
504 |a Muro, S., Pinasco, D., Savransky, M., Hypercyclic behavior of some non-convolution operators on H(CN) (2017) J. Operator Theory, 77 (1), pp. 39-59 
504 |a Nachbin, L., Topology on Spaces of Holomorphic Mappings (1969) Ergeb. Math. Grenzgeb., Band 47. , Springer-Verlag New York Inc. New York 
504 |a Petersson, H., Hypercyclic convolution operators on entire functions of Hilbert–Schmidt holomorphy type (2001) Ann. Math. Blaise Pascal, 8 (2), pp. 107-114 
504 |a Petersson, H., Hypercyclic subspaces for Fréchet space operators (2006) J. Math. Anal. Appl., 319 (2), pp. 764-782 
504 |a Petersson, H., Supercyclic and hypercyclic non-convolution operators (2006) J. Operator Theory, pp. 135-151 
520 3 |a In this article we study the hypercyclic behavior of non-convolution operators defined on spaces of analytic functions of different holomorphy types over Banach spaces. The operators in the family we analyze are a composition of differentiation and composition operators, and are extensions of operators in H(C) studied by Aron and Markose in 2004. The dynamics of this class of operators, in the context of one and several complex variables, was further investigated by many authors. It turns out that the situation is somewhat different and that some purely infinite dimensional difficulties appear. For example, in contrast to the several complex variable case, it may happen that the symbol of the composition operator has no fixed points and still, the operator is not hypercyclic. We also prove a Runge type theorem for holomorphy types on Banach spaces. © 2018 Elsevier Inc.  |l eng 
593 |a Departamento de Matemática – Pab I, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, 1428, Argentina 
593 |a CIFASIS-CONICET, Argentina 
593 |a Departamento de Matemáticas y Estadística, Universidad Torcuato di Tella, Avenida Figueroa Alcorta 7350, 1428, Ciudad Autónoma de Buenos Aires, Argentina 
593 |a CONICET, Argentina 
690 1 0 |a COMPOSITION OPERATORS 
690 1 0 |a DIFFERENTIATION OPERATORS 
690 1 0 |a HOLOMORPHY TYPES 
690 1 0 |a HYPERCYCLIC OPERATORS 
690 1 0 |a NON-CONVOLUTION OPERATORS 
690 1 0 |a STRONGLY MIXING OPERATORS 
700 1 |a Pinasco, D. 
700 1 |a Savransky, M. 
773 0 |d Academic Press Inc., 2018  |g v. 468  |h pp. 622-641  |k n. 2  |p J. Math. Anal. Appl.  |x 0022247X  |w (AR-BaUEN)CENRE-271  |t Journal of Mathematical Analysis and Applications 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052931684&doi=10.1016%2fj.jmaa.2018.08.017&partnerID=40&md5=fd7262488b42f171432e23db57e00d4c  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jmaa.2018.08.017  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0022247X_v468_n2_p622_Muro  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v468_n2_p622_Muro  |y Registro en la Biblioteca Digital 
961 |a paper_0022247X_v468_n2_p622_Muro  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 85847