Acoustic Far-Field Hypersonic Surface Wave Detection with Single Plasmonic Nanoantennas

The optical properties of small metallic particles allow us to bridge the gap between the myriad of subdiffraction local phenomena and macroscopic optical elements. The optomechanical coupling between mechanical vibrations of Au nanoparticles and their optical response due to collective electronic o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Berte, R.
Otros Autores: Della Picca, Fabricio Leandro, Poblet, M., Li, Y., Cortés, E., Craster, R.V, Maier, S.A, Bragas, Andrea Verónica
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Physical Society 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 19421caa a22012497a 4500
001 PAPER-24883
003 AR-BaUEN
005 20250220090814.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85059061431 
030 |a PRLTA 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Berte, R. 
245 1 0 |a Acoustic Far-Field Hypersonic Surface Wave Detection with Single Plasmonic Nanoantennas 
260 |b American Physical Society  |c 2018 
504 |a Fleischmann, M., Hendra, P.J., McQuillan, A.J., (1974) Chem. Phys. Lett., 26, p. 163 
504 |a Hartstein, A., Kirtley, J.R., Tsang, J.C., (1980) Phys. Rev. Lett., 45, p. 201 
504 |a Chen, C.K., De Castro, A.R.B., Shen, Y.R., (1981) Phys. Rev. Lett., 46, p. 145 
504 |a Brüggemann, C., Akimov, A.V., Scherbakov, A.V., Bombeck, M., Schneider, C., Höfling, S., Forchel, A., Bayer, M., (2012) Nat. Photonics, 6, p. 30 
504 |a Chen, Y.S., Frey, W., Kim, S., Kruizinga, P., Homan, K., Emelianov, S., (2011) Nano Lett., 11, p. 348 
504 |a Fong, K.Y., Poot, M., Tang, H.X., (2015) Nano Lett., 15, p. 6116 
504 |a Yu, K., Sader, J.E., Zijlstra, P., Hong, M., Xu, Q.-H., Orrit, M., (2014) Nano Lett., 14, p. 915 
504 |a Chang, W.S., Wen, F., Chakraborty, D., Su, M.N., Zhang, Y., Shuang, B., Nordlander, P., Link, S., (2015) Nat. Commun., 6, p. 7022 
504 |a Della Picca, F., Berte, R., Rahmani, M., Albella, P., Bujjamer, J.M., Poblet, M., Cortés, E., Bragas, A.V., (2016) Nano Lett., 16, p. 1428 
504 |a Major, T.A., Crut, A., Gao, B., Lo, S.S., Fatti, N.D., Vallée, F., Hartland, G.V., (2013) Phys. Chem. Chem. Phys., 15, p. 4169 
504 |a O'Brien, K., Lanzillotti-Kimura, N.D., Rho, J., Suchowski, H., Yin, X., Zhang, X., (2014) Nat. Commun., 5, p. 4042 
504 |a Saviot, L., Netting, C.H., Murray, D.B., (2007) J. Phys. Chem. B, 111, p. 7457 
504 |a Pelton, M., Sader, J.E., Burgin, J., Liu, M., Guyot-Sionnest, P., Gosztola, D., (2009) Nat. Nanotechnol., 4, p. 492 
504 |a Hsueh, C.C., Gordon, R., Rottler, J., (2018) Nano Lett., 18, p. 773 
504 |a Del Fatti, N., Voisin, C., Chevy, F., Vallée, F., Flytzanis, C., (1999) J. Chem. Phys., 110, p. 11484 
504 |a Saviot, L., Murray, D.B., (2004) Phys. Rev. Lett., 93, p. 055506 
504 |a Jean, C., Belliard, L., Cornelius, T.W., Thomas, O., Pennec, Y., Cassinelli, M., Toimil-Molares, M.E., Perrin, B., (2016) Nano Lett., 16, p. 6592 
504 |a Crut, A., Maioli, P., Del Fatti, N., Vallée, F., (2015) Phys. Rep., 549, p. 1 
504 |a Robillard, J.F., Devos, A., Roch-Jeune, I., (2007) Phys. Rev. B, 76, p. 092301 
504 |a Giannetti, C., Revaz, B., Banfi, F., Montagnese, M., Ferrini, G., Cilento, F., Maccalli, S., Parmigiani, F., (2007) Phys. Rev. B, 76, p. 125413 
504 |a Nardi, D., Travagliati, M., Siemens, M.E., Li, Q., Murnane, M.M., Kapteyn, H.C., Ferrini, G., Banfi, F., (2011) Nano Lett., 11, p. 4126 
504 |a Lanzillotti-Kimura, N.D., O'Brien, K.P., Rho, J., Suchowski, H., Yin, X., Zhang, X., (2018) Phys. Rev. B, 97, p. 235403 
504 |a Lin, H.N., Maris, H.J., Freund, L.B., Lee, K.Y., Luhn, H., Kern, D.P., (1993) J. Appl. Phys., 73, p. 37 
504 |a Marty, R., Arbouet, A., Girard, C., Mlayah, A., Paillard, V., Lin, V.K., Teo, S.L., Tripathy, S., (2011) Nano Lett., 11, p. 3301 
504 |a Yi, C., Su, M.N., Dongare, P., Chakraborty, D., Cai, Y.Y., Marolf, D.M., Kress, R.N., Link, S., (2018) Nano Lett., 18, p. 3494 
504 |a Soavi, G., Tempra, I., Pantano, M.F., Cattoni, A., Collin, S., Biagioni, P., Pugno, N.M., Cerullo, G., (2016) ACS Nano, 10, p. 2251 
504 |a Ahmed, A., Pelton, M., Guest, J.R., (2017) ACS Nano, 11, p. 9360 
504 |a Grudinin, I.S., Lee, H., Painter, O., Vahala, K.J., (2010) Phys. Rev. Lett., 104, p. 083901 
504 |a Weigel, R., Morgan, D.P., Owens, J.M., Ballato, A., Lakin, K.M., Hashimoto, K.-Y., Ruppel, C.C., (2002) IEEE Trans. Microwave Theory Tech., 50, p. 738 
504 |a http://link.aps.org/supplemental/10.1103/PhysRevLett.121.253902; Haynes, W.M., (2017) CRC Handbook of Chemistry and Physics, , (CRC Press, Boca Raton) 
504 |a Viktorov, I.A., (1967) Rayleigh and Lamb Waves - Physical Theory and Applications, , 1st ed. (Springer, New York) 
504 |a Rahman, M., Michelitsch, T., (2006) Wave Motion, 43, p. 272 
504 |a Laude, V., (2015) Phononic Crystals: Artificial Crystals for Sonic, Acoustic, and Elastic Waves, , (De Gruyter Studies in Mathematical Physics, Berlin) 
504 |a Penn, S.D., Harry, G.M., Gretarsson, A.M., Kittelberger, S.E., Saulson, P.R., Schiller, J.J., Smith, J.R., Swords, S.O., (2001) Rev. Sci. Instrum., 72, p. 3670 
504 |a Gargiulo, J., Violi, I.L., Cerrota, S., Chvátal, L., Cortés, E., Perassi, E.M., Diaz, F., Stefani, F.D., (2017) ACS Nano, 11, p. 9678 
506 |2 openaire  |e Política editorial 
520 3 |a The optical properties of small metallic particles allow us to bridge the gap between the myriad of subdiffraction local phenomena and macroscopic optical elements. The optomechanical coupling between mechanical vibrations of Au nanoparticles and their optical response due to collective electronic oscillations leads to the emission and the detection of surface acoustic waves (SAWs) by single metallic nanoantennas. We take two Au nanoparticles, one acting as a source and the other as a receptor of SAWs and, even though these antennas are separated by distances orders of magnitude larger than the characteristic subnanometric displacements of vibrations, we probe the frequency content, wave speed, and amplitude decay of SAWs originating from the damping of coherent mechanical modes of the source. Two-color pump-probe experiments and numerical methods reveal the characteristic Rayleigh wave behavior of emitted SAWs, and show that the SAW-induced optical modulation of the receptor antenna allows us to accurately probe the frequency of the source, even when the eigenmodes of source and receptor are detuned. © 2018 American Physical Society.  |l eng 
536 |a Detalles de la financiación: Borders, PIP 112 201301 00619 
536 |a Detalles de la financiación: Universidad de Buenos Aires, BEX 13.298/13-5 
536 |a Detalles de la financiación: 20020130100775BA 
536 |a Detalles de la financiación: Air Force Office of Scientific Research 
536 |a Detalles de la financiación: DF 70040-020 
536 |a Detalles de la financiación: Air Force Office of Scientific Research, FA9550-17-1-0300 
536 |a Detalles de la financiación: Imperial College London 
536 |a Detalles de la financiación: Leverhulme Trust 
536 |a Detalles de la financiación: Leverhulme Trust 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Engineering and Physical Sciences Research Council, 10.13039/501100000266 EP/L024926/1 PIP 112 201301 00619 
536 |a Detalles de la financiación: Berte Rodrigo 1,2 ,* Della Picca Fabricio 3 ,* Poblet Martín 3 Li Yi 1 Cortés Emiliano 1,4 Craster Richard V. 5 Maier Stefan A. 1,4 ,† Bragas Andrea V. 3 ,‡ The Blackett Laboratory, Department of Physics, 1 Imperial College London , London SW7 2AZ, United Kingdom 2 CAPES Foundation , Ministry of Education of Brazil, Brasília, DF 70040-020, Brazil Departamento de Física, FCEN, IFIBA CONICET, 3 Universidad de Buenos Aires , Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina Chair in Hybrid Nanosystems, Nanoinstitut München, Fakultät für Physik, 4 Ludwig-Maximilians-Universität München , 80799 München, Germany Department of Mathematics, 5 Imperial College , London SW7 2AZ, United Kingdom * R. B. and F. D. P. contributed equally to this work. † Stefan.Maier@physik.uni-muenchen.de ‡ bragas@df.uba.ar 20 December 2018 21 December 2018 121 25 253902 16 August 2018 © 2018 American Physical Society 2018 American Physical Society The optical properties of small metallic particles allow us to bridge the gap between the myriad of subdiffraction local phenomena and macroscopic optical elements. The optomechanical coupling between mechanical vibrations of Au nanoparticles and their optical response due to collective electronic oscillations leads to the emission and the detection of surface acoustic waves (SAWs) by single metallic nanoantennas. We take two Au nanoparticles, one acting as a source and the other as a receptor of SAWs and, even though these antennas are separated by distances orders of magnitude larger than the characteristic subnanometric displacements of vibrations, we probe the frequency content, wave speed, and amplitude decay of SAWs originating from the damping of coherent mechanical modes of the source. Two-color pump-probe experiments and numerical methods reveal the characteristic Rayleigh wave behavior of emitted SAWs, and show that the SAW-induced optical modulation of the receptor antenna allows us to accurately probe the frequency of the source, even when the eigenmodes of source and receptor are detuned. Capes Foundation BEX 13.298/13-5 Engineering and Physical Sciences Research Council 10.13039/501100000266 EP/L024926/1 PIP 112 201301 00619 UBACyT 20020130100775BA Air Force Office of Scientific Research 10.13039/100000181 FA9550-17-1-0300 Leverhulme Trust 10.13039/501100000275 The ability of metallic nanostructures to confine light at subdiffraction volumes in their near field allows the local enhancement of inherently weak phenomena such as Raman scattering [1] , infrared absorption [2] , and higher harmonic generation [3] . The decay of these optical excitations, given the large absorption cross sections and fast electronic relaxation processes, makes nanostructured conducting materials efficient local transducers of far-field electromagnetic radiation into mechanical energy. In addition, the strong optical modulation provided by the launched coherent acoustic modes in these nanostructures allows their exploitation as exquisitely sensitive mechanical probes of their near environment. The efficient generation of acoustic waves by nanostructured transducers and the strong self-modulation provided by the launched coherent phononic modes have enabled their application as, for instance, light-source modulators [4] , photoacoustic amplifiers [5] , and mass sensors [6,7] . The spectrally narrow acoustic modes obtained in these nanostructures are defined by the resonator’s constitution and multiple boundary conditions such as size, shape, composition, their substrate, and embedding media. This parameter space has been systematically explored where resonances were tuned by changes in adhesion layer thickness [8] , mechanical constraints [9] , by positioning resonators over trenches [10] , and even by mode interference from a delayed two-pump excitation scheme [11] . Equally importantly, the damping of acoustic vibrations, which defines the spectral linewidth of modes, is a prominent aspect in the application of these systems, and has also received considerable attention, being successfully modeled for infinite isotropic environments [10,12–16] . However, the multiple decay mechanisms in environments without spherical or cylindrical symmetry, such as when particles lie on a substrate, remain poorly understood [17] . In these cases, to determine the damping and quality factors of resonances, current practice (Ref.  [18] ) is to use empirical fitting of the decaying modulated time-domain signals. Among different contributions to the measured effective damping of a particular phononic mode, the radiation of acoustic waves to the embedding matrix or the substrate, is qualitatively assessed via the mismatch in acoustic impedance ( Z ) between the vibrating object and its environment. In the longitudinal plane wave limit the impedance is given by Z = ρ j c L j (being ρ j the j medium density and c L j the corresponding longitudinal wave speed). However, such a qualitative analysis may be misleading as Z is a mode-dependent parameter, and for which low damping can be obtained even for a perfect impedance match [16] . Accordingly, theoretical calculations have systematically predicted shorter acoustic damping times for particles in solid matrixes and longer damping times for liquid environments when compared to experimental values [18] . Nevertheless, the damping through the coupling of nanostructures to the substrate has been shown to lead to the emission of surface acoustic waves (SAWs) which have been successfully obtained in nanowires [17] and in periodic arrays of plasmonic nanoantennas [19–21] . The latter induce collective modes of the array and the substrate, allowing tailored dispersion defined by the periodicity of the lattice, and, more recently, pump polarization-controlled modes [22] . However, the use of periodic arrays has limitations such as the generation of pseudo-SAWs due to scattering into the substrate [21,23] and inhomogeneous damping caused by the size dispersion of nanostructures. Thus, measurements in single nanostructures are required to further elucidate the acoustic wave damping of the generated coherent phonons [24] . Although acoustic damping of particles on a substrate seems to be dominated by internal crystalline defects, as recently reported [25] , in this Letter we report that vibrational modes in single nanostructures can significantly couple to SAWs on the underlying substrate and thereby probed in the acoustic far field. These SAW excitations induce coherent vibrations in a second nanoantenna at distances much larger than the characteristic amplitude of modes of the source, which are estimated to be on the order of subnanometric and even subatomic scales [26,27] . The choice of single antennas for generation and detection of SAWs avoids inhomogeneous damping due to size dispersion, which through destructive interference leads to underestimation for mode lifetimes. Distance-dependent detection times reveal mechanical properties of the substrate, such as surface wave speed, and finite-element method calculations suggest mode-dependent emission of Rayleigh and bulk shear waves. These emitted waves expose fundamental aspects of acoustic mode damping in nanostructures; the coupling of SAWs and plasmonic modes in single nanoantennas demonstrated here has potential to extend their range of applications from pure local transducers or self-modulated probes to sensitive mechanical sensors, such as in nondestructive fatigue cracks detection at the nanoscale. The goal of in-phase stimulated emission of acoustic phonons ultimately depends on the complete understanding of the coupling between transducers and a transport media, either a surrounding matrix or a substrate [28] . To study the generation and detection of SAWs, gold nanoantennas were fabricated on fused-silica substrate with a 2 nm chromium adhesion layer through standard electron-beam lithography, thermal evaporation, and lift-off techniques [9] . The amorphous fused silica was chosen as substrate due to its widespread use in nanofabrication, although a lower damping of SAWs is expected for crystalline substrates such as sapphire [29] . The role of different frequencies on the generation and propagation of SAWs was assessed by varying the geometry, in-plane dimensions, and distance between nanoantennas assigned as source ( S ) and receptor ( R ) of acoustic waves. Nondegenerate sub-ps delayed pump-probe pulses were used for the excitation of coherent phonons in the source via interband transitions at 405 nm wavelength and detection of SAWs through transient transmission of the probe due to acoustic modulation of localized surface plasmon resonances (LSPRs) of the receptor at 810 nm wavelength. The pump-probe experimental setup is depicted schematically in Fig.  1(a) where it is also shown, in a zoom of the sample zone, that the pump and probe beams can be independently directed through positioning adjustment stages to different points of the focal plane and thus be focusing on different antennas. Finite-element method (FEM) calculations, performed with the commercially available software Comsol Multiphysics (details in the Supplemental Material [30] ), in the time-domain reveal the SAWs emission pattern, shown in Fig.  1(b) , for a Au rod and a disk. Here, the displacive excitation mechanism was considered, corresponding to an exponential increase in the lattice temperature ( T L ) as resulting from a two-temperature (electron-lattice) model T L ( t ) = T 0 + ( T eq - T 0 ) [ 1 - exp ( - t / τ e - L 0 ) ] , where T 0 = 293.15     K is the initial temperature, T eq = 393.15     K the estimated lattice equilibrium temperature, and τ e - L 0 the electron-lattice energy-transfer time ( τ e - L 0 ≈ 1.1     ps for Au) [18] . Deviations from the expo 
593 |a Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2AZ, United Kingdom 
593 |a CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, 70040-020, Brazil 
593 |a Departamento de Física, FCEN, IFIBA CONICET, Universidad de Buenos Aires, Intendente Güiraldes 2160, Buenos Aires, C1428EGA, Argentina 
593 |a Department in Hybrid Nanosystems, Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, München, 80799, Germany 
593 |a Department of Mathematics, Imperial College, London, SW7 2AZ, United Kingdom 
690 1 0 |a ACOUSTIC SURFACE WAVE DEVICES 
690 1 0 |a ACOUSTIC WAVES 
690 1 0 |a CIRCUIT OSCILLATIONS 
690 1 0 |a GOLD NANOPARTICLES 
690 1 0 |a METAMATERIAL ANTENNAS 
690 1 0 |a NANOANTENNAS 
690 1 0 |a NANOPARTICLES 
690 1 0 |a NUMERICAL METHODS 
690 1 0 |a OPTICAL PROPERTIES 
690 1 0 |a PLASMONICS 
690 1 0 |a PROBES 
690 1 0 |a SIGNAL DETECTION 
690 1 0 |a SURFACE WAVES 
690 1 0 |a FREQUENCY CONTENTS 
690 1 0 |a OPTICAL RESPONSE 
690 1 0 |a ORDERS OF MAGNITUDE 
690 1 0 |a PUMP-PROBE EXPERIMENTS 
690 1 0 |a SMALL METALLIC PARTICLES 
690 1 0 |a SUB-DIFFRACTION 
690 1 0 |a SURFACE ACOUSTIC WAVES 
690 1 0 |a WAVE DETECTION 
690 1 0 |a VIBRATIONS (MECHANICAL) 
700 1 |a Della Picca, Fabricio Leandro 
700 1 |a Poblet, M. 
700 1 |a Li, Y. 
700 1 |a Cortés, E. 
700 1 |a Craster, R.V. 
700 1 |a Maier, S.A. 
700 1 |a Bragas, Andrea Verónica 
773 0 |d American Physical Society, 2018  |g v. 121  |k n. 25  |p Phys Rev Lett  |x 00319007  |w (AR-BaUEN)CENRE-386  |t Physical Review Letters 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059061431&doi=10.1103%2fPhysRevLett.121.253902&partnerID=40&md5=e5250d7c95471f0c8273e28735db16de  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRevLett.121.253902  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00319007_v121_n25_p_Berte  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00319007_v121_n25_p_Berte  |y Registro en la Biblioteca Digital 
961 |a paper_00319007_v121_n25_p_Berte  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 85836