The fourier transform of P+ λ and P- λ
We know from([5],page284) that the Fourier transform of P+ λ and P- λ are given by the formulae(4) and(5) respectively. In this article using another method we obtain the Fourier transform of P+ λ and P- λ, where P = P(x) is defined by(1), P+ λ by(8) and P- λ by(9). We prove that our formulae (44) a...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Academic Press
2015
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 02753caa a22003977a 4500 | ||
|---|---|---|---|
| 001 | PAPER-24844 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518205646.0 | ||
| 008 | 190411s2015 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84948469119 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Aguirre, M.A. | |
| 245 | 1 | 4 | |a The fourier transform of P+ λ and P- λ |
| 260 | |b Academic Press |c 2015 | ||
| 270 | 1 | 0 | |m Aguirre, M.A.; Núcleo Consolidado de Matemática Pura y Aplicada, Facultad de Ciencias Exactas, Universidad Nacional del CentroArgentina |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Schwartz, L., Métodos Matemáticos Aplicados a las Ciencias Físicas (1969) Selecciones Científicas, , Torres Quevedo, 7-9, Madrid | ||
| 504 | |a Gradshetyn, I.S., Ryzhik, I.M., (1980) Table of Inthegrals, Series and Products, , Academic Press, Inc | ||
| 504 | |a (1954) Tables of Integral Transform, 2. , McGraw-Hill, New York | ||
| 504 | |a Erdelyi, A., (1953) Higher Trascendental Functions, 1. , McGraw-Hill, New York | ||
| 504 | |a Gelfand, I.M., Shilov, G.E., (1964) Generalized Functions, , Academic Press | ||
| 504 | |a Bochner, (1932) Verlesungen Über Fouriersche Integrale, , Leipzig | ||
| 520 | 3 | |a We know from([5],page284) that the Fourier transform of P+ λ and P- λ are given by the formulae(4) and(5) respectively. In this article using another method we obtain the Fourier transform of P+ λ and P- λ, where P = P(x) is defined by(1), P+ λ by(8) and P- λ by(9). We prove that our formulae (44) and (82) are equivalent to formulae (4) and (5) respectively. © 2015 Academic Publications, Ltd. |l eng | |
| 593 | |a Núcleo Consolidado de Matemática Pura y Aplicada, Facultad de Ciencias Exactas, Universidad Nacional del Centro, Buenos Aires, Argentina | ||
| 690 | 1 | 0 | |a DISTRIBUTIONS |
| 690 | 1 | 0 | |a FOURIER TRANSFORM |
| 690 | 1 | 0 | |a ULTRAHYPERBOLIC KERNEL |
| 700 | 1 | |a Rébora, E.A. | |
| 773 | 0 | |d Academic Press, 2015 |g v. 105 |h pp. 281-296 |k n. 2 |p Int. J. Pure Appl. Math. |x 13118080 |t International Journal of Pure and Applied Mathematics | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84948469119&doi=10.12732%2fijpam.v105i2.13&partnerID=40&md5=b0901066083bfa5c6f02a2a13d65d607 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.12732/ijpam.v105i2.13 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_13118080_v105_n2_p281_Aguirre |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13118080_v105_n2_p281_Aguirre |y Registro en la Biblioteca Digital |
| 961 | |a paper_13118080_v105_n2_p281_Aguirre |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 85797 | ||