Detection of thiourea from electrorefining baths using silver nanoparticles-based sensors

A novel and easy-to-use colorimetric thiourea (TU) sensor based on immobilized polyvinylpyrrolidone-stabilized silver nanoparticles (PVP-AgNPs) is reported. The new sensor is aimed for its direct application in copper electrorefinery baths. Quantitative analysis was carried out by adding different t...

Descripción completa

Detalles Bibliográficos
Autor principal: Pedre, I.
Otros Autores: Battaglini, Fernando, Delgado, G.J.L, Sánchez-Loredo, M.G, González, G.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13723caa a22010457a 4500
001 PAPER-24776
003 AR-BaUEN
005 20241007093103.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84923084058 
030 |a SABCE 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Pedre, I. 
245 1 0 |a Detection of thiourea from electrorefining baths using silver nanoparticles-based sensors 
260 |b Elsevier  |c 2015 
270 1 0 |m Sánchez-Loredo, M.G.; Instituto de Metalurgia/Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, Mexico 
504 |a Shravan Kumar, K., Biswas, K., Effect of thiourea on grain refinement and defect structure of the pulsed electrodeposited nanocrystalline copper (2013) Surf. Coat. Technol., 214, pp. 8-18 
504 |a Kang, M.S., Kim, S.K., Kim, K., Kim, J.J., The influence of thiourea on copper electrodeposition: Adsorbate identification and effect on electrochemical nucleation (2008) Thin Solid Films, 516, pp. 3761-3766 
504 |a Haseeb, A.S.M., Schilardi, P., Bolzan, A., Piatti, R.C., Salvarezza, R., Arvia, A., Anodisation of copper in thiourea-containing acid solution (2001) J. Electroanal. Chem., 500, pp. 543-553 
504 |a Bolzán, A., Piatti, R.C., Arvia, A., Electrochemical processes at gold-thiourea-containing aqueous acid solution interfaces (2003) J. Electroanal. Chem., 552, pp. 19-34 
504 |a Portela, A.L., Lacconi, G.I., Lopez Teijelo, M., Nicotinic acid as brightener agent in copper electrodeposition (2001) J. Electroanal. Chem., 495, pp. 169-172 
504 |a Gómez, H., Lizama, H., Suárez, C., Valenzuela, A., Effect of thiourea concentration on the electrochemical behavior of gold and copper electrodes in presence and absence of Cu(II) ions (2009) J. Chil. Chem. Soc., 54, pp. 439-444 
504 |a Akeneev, Y.A., Zakharova, E.A., Slepchenko, G.B., Pikula, N.P., Voltammetric determination of thiourea in copper refinery electrolytes (2005) J. Anal. Chem., 60, pp. 514-517 
504 |a Wang, G.-L., Dong, Y.-M., Zhu, X.-Y., Zhang, W.-J., Wang, C., Jiao, H.-J., Ultrasensitive and selective colorimetric detection of thiourea using silver nanoprobes (2011) Analyst, 136, pp. 5256-5260 
504 |a Manea, F., Radovan, C., Schoonman, J., Amperometric determination of thiourea in alkaline media on a copper oxide-copper electrode (2006) J. Appl. Electrochem., 36, pp. 1075-1081 
504 |a Bowley, H.J., Crathorne, E.A., Gerrard, D.L., Quantitative determination of thiourea in aqueous solution in the presence of sulphur dioxide by Raman spectroscopy (1986) Analyst, 111, pp. 539-542 
504 |a Wang, N., Budde, W.L., Determination of carbamate, urea, and thiourea pesticides and herbicides in water (2001) Anal. Chem., 73, pp. 997-1006 
504 |a Kargosha, K., Khanmohammadi, M., Ghadiri, M., Vapour phase Fourier transform infrared spectrometric determination of thiourea (2001) Analyst, 126, pp. 1432-1435 
504 |a Abbasi, S., Khani, H., Hosseinzadeh, L., Safari, Z., Determination of thiourea in fruit juice by a kinetic spectrophotometric method (2010) J. Hazard. Mater., 174, pp. 257-262 
504 |a Abbasi, S., Khani, H., Bagher Gholivand, M., Naghipoura, A., Farmany, A., Abbasi, F., A kinetic method for the determination of thiourea by its catalytic effect in micellar media (2009) Spectrochim. Acta Part A, 72, pp. 327-331 
504 |a Rethmeier, J., Neumann, G., Stumpf, C., Rabenstein, A., Vogt, C., Determination of low thiourea concentrations in industrial process water and natural samples using reversed-phase high-performance liquid chromatography (2001) J. Chromatogr. A, 934, pp. 129-134 
504 |a Tashdjian, A., Sánchez Loredo, M.G., González, G.A., Preparation of silver nanoparticle-based sensor for the electrochemical detection of thiourea in leaching solutions of waste and electronic equipment (2013) Electroanal., 25, pp. 2124-2129 
504 |a Sönnichsen, C., Franzl, T., Wilk, T., Von Plessen, G., Feldmann, J., Plasmon resonances in large noble-metal clusters (2002) New J. Phys., 4, pp. 93-93 
504 |a Wei, H., Chen, C., Han, B., Wang, E., Enzyme colorimetric assay using unmodified silver nanoparticles (2008) Analyt. Chem., 80, pp. 7051-7055 
504 |a Taheri, A., Noroozifar, M., Khorasani-Motlagh, M., Investigation of a new electrochemical cyanide sensor based on Ag nanoparticles embedded in a three-dimensional sol-gel (2009) J. Electroanal. Chem., 628, pp. 48-54 
504 |a Lee, J.-S., Ulmann, P.A., Han, M.S., Mirkin, C.A., A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine (2008) Nano Lett., pp. 529-533 
504 |a Schofield, C.L., Haines, A.H., Field, R.A., Russell, D.A., Silver and gold glyconanoparticles for colorimetric bioassays (2006) Langmuir, 22, pp. 6707-6711 
504 |a Zhou, Y., Zhao, H., He, Y.-J., Ding, N., Cao, Q.-A., Colorimetric detection of Cu2+ using 4-mercaptobenzoic acid modified silver nanoparticles (2011) Colloids Surf. A: Physicochem. Eng. Aspects, 391, pp. 179-183 
504 |a Zhou, Y., Zhao, H., Li, Ch., He, P., Peng, W.-B., Yuan, L.-F., Zeng, L.-X., He, Y.-J., Colorimetric detection of Mn2+ using silver nanoparticles cofunctionalized with 4-mercaptobenzoic acid and melamine as a probe (2012) Talanta, 97, pp. 331-335 
504 |a Li, H.-B., Cui, Z.-M., Han, C.-P., Glutathione-stabilised silver nanoparticles as colorimetric sensor for Ni2+ ion (2009) Sens. Actuators B, 143, pp. 87-92 
504 |a Gao, Y.-X., Xin, J.-W., Shen, Z.-Y., Pan, W., Li, X., Wu, A.-G., A new rapid colorimetric detection method of Mn2+ based on tripolyphosphate modified silver nanoparticles (2013) Sens. Actuators B, 181, pp. 288-293 
504 |a Tripathy, S.K., Woo, J.-Y., Han Ch.-, S., Colorimetric detection of Fe(III) ions using label-free gold nanoparticles and acidic thiourea mixture (2013) Sens. Actuators, B, 181, pp. 114-118 
504 |a Wuithschick, M., Paul, B., Bienert, R., Sarfraz, A., Vainio, U., Sztucki, M., Kraehnert, R., Polte, J., Size-controlled synthesis of colloidal silver nanoparticles based on mechanistic understanding (2013) Chem. Mater., 25, pp. 4679-4689 
504 |a Cortez, M.L., Ceolín, M., Azzaroni, O., Battaglini, F., Electrochemical sensing platform based on polyelectrolyte-surfactant supramolecular assemblies incorporating carbon nanotubes (2011) Anal. Chem., 83, pp. 8011-8018 
504 |a Cortez, M.L., González, G.A., Battaglini, F., An electroactive versatile matrix for the construction of sensors (2011) Electroanal., 23, pp. 156-160 
504 |a Martínez-Castañón, G.A., Sánchez-Loredo, M.G., Dorantes, H.J., Martínez-Mendoza, J.R., Ortega-Zarzosa, G., Ruiz, F., Characterization of silver sulfide nanoparticles synthesized by a simple precipitation method (2005) Mater. Lett., 59, pp. 529-534 
504 |a Wang, H., Qiao, X., Chen, J., Wang, X., Ding, S., Mechanisms of PVP in the preparation of silver nanoparticles (2005) Mater. Chem. Phys., 94, pp. 449-453 
504 |a Sun, Y., Yadong, Y., Mayers, B.T., Herricks, T., Xia, Y., Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone) (2002) Chem. Mater., 14, pp. 4736-4745 
506 |2 openaire  |e Política editorial 
520 3 |a A novel and easy-to-use colorimetric thiourea (TU) sensor based on immobilized polyvinylpyrrolidone-stabilized silver nanoparticles (PVP-AgNPs) is reported. The new sensor is aimed for its direct application in copper electrorefinery baths. Quantitative analysis was carried out by adding different thiourea amounts into a synthetic bath and monitoring the absorption changes of the surface plasmon resonance band (SPRB) by UV-Vis spectrophotometry. A linear correlation between the absorbance change and thiourea concentration was obtained, ranging from 0.125 mg/L to 1 mg/L. Our technique has the advantage of working in acidic and high ionic concentrated solutions as those used in electrorefinery baths. The influence of the nanoparticles synthesis conditions on the thiourea sensing was analyzed; particularly, the effect of using different silver concentrations and the same amount of borohydride ions as reducing agent ([Ag+]/[BH4-] ratios of 2:1, 8:1, 10:1 and 20:1 during the synthesis). The proposed system provides a simple, economical, easy-to-handle and rapid measurement tool for monitoring hydrometallurgical processes for optimizing the reconditioning of thiourea solutions, reducing its environmental impact. © 2015 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, 0191145-PICT2012-3081 
536 |a Detalles de la financiación: This work was partially supported by Universidad de Buenos Aires, ANPCYT and CONICET , and by the Fondo FONSEC SRE México-Argentina en Nanotecnología (CONACyT-ANPCYT) , Projects 0191145-PICT2012-3081. G. A. G. and F. B. are research staff of CONICET, I. P. acknowledges CONICET for his doctoral fellowship. The authors thank to Gerardo Cifuentes Molina from University of Santiago de Chile for the information about additives. Ignacio Pedre is a PhD student at Universidad de Buenos Aires (UBA). He obtained his degree as a Bachelor in chemistry in the same university. His fields of interest are analytical and environmental chemistry, and his work focuses on the modification of surfaces for the development of sensors applied to environmentally relevant compounds. Fernando Battaglini is an associate professor at Universidad de Buenos Aires and research staff of the Argentina Research Council (CONICET). He received his PhD from Universidad de Buenos Aires in 1991. His research interests are biosensors, electrochemistry and materials science. Gladis Judith Labrada Delgado (PhD in mineral engineering, Autonomous University of San Luis Potosí, Mexico) is since 2009 academic technician at the National Laboratory for Nanoscience and Nanotechnology Research, LINAN-IPICYT, Mexico. Her research interests focus on morphochemical characterization of particulate matter in the air (PM2.5 and PM1.0) as well as synthesis and characterization of nanostructured materials (metals, oxides, core-shell structures, nanotubes) by scanning electron microscopy. Maria Guadalupe Sánchez-Loredo (PhD in applied chemistry, University of Paderborn, Germany) is since 1997 professor of Materials Science and Environmental Technology at the Institute of Metallurgy/School of Engineering, UASLP, San Luis Potosí, Mexico. Her research interests focus on hydrometallurgy (solvent extraction), chemical synthesis and characterization of nanostructured materials (metals, semiconductors, oxides, fluorides), as well as nanocomposite preparation and their applications in membrane separation, analytic and textiles. Graciela Alicia González is a professor of Technological Institute of Buenos Aires (ITBA) and a research staff of the Argentina Research Council (CONICET). She is Specialist in Environmental Chemistry (Universidad de Buenos Aires-1998) and received her PhD in Chemistry from the Universidad de Buenos Aires (2003). Her research interests are modeling of electrochemical processes, electrodeposition, materials science and sensors. 
593 |a INQUIMAE - Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina 
593 |a Instituto Potosino de Investigación Científica y Tecnológica, Camino A la Presa San José 2055, San-Luis-Potosí, 78216, Mexico 
593 |a Instituto de Metalurgia/Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San-Luis-Potosí, 78210, Mexico 
690 1 0 |a COPPER ELECTROREFINING 
690 1 0 |a SILVER NANOPARTICLES 
690 1 0 |a SPECTROPHOTOMETRY 
690 1 0 |a SURFACE PLASMON RESONANCE BAND 
690 1 0 |a THIOUREA 
690 1 0 |a COPPER 
690 1 0 |a ENVIRONMENTAL IMPACT 
690 1 0 |a NANOPARTICLES 
690 1 0 |a PLASMONS 
690 1 0 |a SPECTROPHOTOMETRY 
690 1 0 |a SURFACE PLASMON RESONANCE 
690 1 0 |a SYNTHESIS (CHEMICAL) 
690 1 0 |a THIOUREAS 
690 1 0 |a CONCENTRATED SOLUTION 
690 1 0 |a COPPER ELECTROREFINING 
690 1 0 |a HYDROMETALLURGICAL PROCESS 
690 1 0 |a NANOPARTICLES SYNTHESIS 
690 1 0 |a POLY VINYL PYRROLIDONE 
690 1 0 |a SILVER CONCENTRATION 
690 1 0 |a SILVER NANOPARTICLES 
690 1 0 |a UV-VIS SPECTROPHOTOMETRY 
690 1 0 |a SILVER 
700 1 |a Battaglini, Fernando 
700 1 |a Delgado, G.J.L. 
700 1 |a Sánchez-Loredo, M.G. 
700 1 |a González, G.A. 
773 0 |d Elsevier, 2015  |g v. 211  |h pp. 515-522  |p Sens Actuators, B Chem  |x 09254005  |w (AR-BaUEN)CENRE-6816  |t Sensors and Actuators, B: Chemical 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84923084058&doi=10.1016%2fj.snb.2015.01.074&partnerID=40&md5=b761a19459b2f817da4d971c016da092  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.snb.2015.01.074  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09254005_v211_n_p515_Pedre  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09254005_v211_n_p515_Pedre  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_09254005_v211_n_p515_Pedre  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion