Bacillus subtilis subsp. subtilis CBMDC3f with antimicrobial activity against Gram-positive foodborne pathogenic bacteria: UV-MALDI-TOF MS analysis of its bioactive compounds

In this work a new Bacillus sp. strain, isolated from honey, was characterized phylogenetically. Its antibacterial activity against three relevant foodborne pathogenic bacteria was studied; the main bioactive metabolites were analyzed using ultraviolet matrix assisted laser desorption-ionization mas...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Torres, M.J
Otros Autores: Petroselli, G., Daz, M., Erra-Balsells, R., Audisio, M.C
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Kluwer Academic Publishers 2015
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 19969caa a22017417a 4500
001 PAPER-24719
003 AR-BaUEN
005 20230518205638.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84937758640 
024 7 |2 Molecular Sequence Numbers  |a GENBANK: JX120508, JX120516; 
024 7 |2 cas  |a DNA topoisomerase (ATP hydrolysing); Anti-Bacterial Agents; Biological Products; DNA Gyrase; DNA, Bacterial; DNA, Ribosomal; RNA, Ribosomal, 16S 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a WJMBE 
100 1 |a Torres, M.J. 
245 1 0 |a Bacillus subtilis subsp. subtilis CBMDC3f with antimicrobial activity against Gram-positive foodborne pathogenic bacteria: UV-MALDI-TOF MS analysis of its bioactive compounds 
260 |b Kluwer Academic Publishers  |c 2015 
270 1 0 |m Audisio, M.C.; Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Av.Bolivia 5150, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Aksu, H., Bostan, K., Ergün, Ö., Presence of Bacillus cereus in packaged some spices and herbs sold in Istanbul (2000) Pak J Biol Sci, 3, pp. 710-712 
504 |a Audisio, M.C., Terzolo, H.R., Apella, M.C., Bacteriocin from honeybee beebread Enterococcus avium active against Listeria monocytogenes (2005) Appl Environ Microbiol, 71, pp. 3373-3375. , COI: 1:CAS:528:DC%2BD2MXlt1Ors7w%3D 
504 |a Ayed, H.B., Hmidet, N., Béchet, M., Chollet, M., Chataigné, G., Leclère, V., Jacques, P., Nasri, M., Identification and biochemical characteristics of lipopeptides from Bacillus mojavensis A21 (2014) Process Biochem, 49, pp. 1699-1707 
504 |a Bhunia, A.K., Bacillus cereus and Bacillus anthracis (2008) Foodborne microbial pathogens: mechanisms and pathogenesis, pp. 135-147. , Bhunia AK, (ed), Springer, New York 
504 |a Burkard, M., Entian, K.D., Stein, T., Development and application of a microtiter plate-based autoinduction bioassay for detection of the lantibiotic subtilin (2007) J Microbiol Methods, 70, pp. 179-185. , COI: 1:CAS:528:DC%2BD2sXmvVKmu7Y%3D 
504 |a Compaoré, C.S., Nielsen, D.C., Ouoba, L.I., Berner, T.S., Nielsen, K.F., Sawadogo-Lingani, H., Diawara, B., Thorsen, L., Co-production of surfactin and a novel bacteriocin by Bacillus subtilis subsp. subtilis H4 isolated from Bikalga, an African alkaline Hibiscus sabdariffa seed fermented condiment (2013) Int J Food Microbiol, 162, pp. 297-307 
504 |a Daffonchio, D., Borin, S., Frova, G., Manachini, P., Sorlini, C., PCR fingerprinting of whole genomes: the spacers between the 16S and 23S rRNA genes and of intergenic tRNA gene regions reveals a different intraespecific genomic variability of Bacillus cereus and Bacillus licheniformis (1998) Int J Syst Bacteriol, 48, pp. 107-116. , COI: 1:CAS:528:DyaK1cXislGms74%3D 
504 |a de Clerck, E., Vanhoutte, T., Hebb, T., Geerinck, J., Devos, J., De Vos, P., Isolation, characterization, and identification of bacterial contaminants in semifinal gelatin extracts (2004) Appl Environ Microbiol, 70, pp. 3664-3672 
504 |a De Faria, A.F., Teodoro-Martinez, D.S., de Oliveira Barbosa, G.N., Vaz, B.G., Serrano Silva, Í., Simone Garcia, J., Tótolac, M.R., Durranta, L.R., Production and structural characterization of surfactin (C14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from biodiesel industry (2011) Process Biochem, 46, pp. 1951-1957 
504 |a Foster, T.J., Immune evasion by staphylococci (2005) Nat Rev Microbiol, 3, pp. 948-958. , COI: 1:CAS:528:DC%2BD2MXht1OnsLfM 
504 |a Freyre-González, J.A., Manjarrez-Casas, A.M., Merino, E., Martinez-Nuñez, M., Perez-Rueda, E., Gutiérrez-Ríos, R.M., Lessons from the modular organization of the transcriptional regulatory network of Bacillus subtilis (2013) BMC Syst Biol, 7, pp. 127-141 
504 |a Fuchs, S.W., Jaskolla, T.W., Bochmann, S., Kötter, P., Wichelhaus, T., Karas, M., Stein, T., Entian, K.D., Entianin, a novel subtilin-like lantibiotic from Bacillus subtilis subsp. spizizenii DSM 15029T with high antimicrobial activity (2011) Appl Environ Microbiol, 77, pp. 1698-1707. , COI: 1:CAS:528:DC%2BC3MXhtVWktbrL 
504 |a Gandhi, M., Chikindas, M.L., Listeria: a foodborne pathogen that knows how to survive (2007) Int J Food Microbiol, 113, 15p 
504 |a Gomaa, E.Z., Antimicrobial activity of a biosurfactant produced by Bacillus licheniformis strain M104 grown on whey (2013) Braz Arch Biol Technol, 56, pp. 259-268. , COI: 1:CAS:528:DC%2BC3sXhtlaiur7L 
504 |a Hiradate, S., Yoshida, S., Sugie, H., Yada, H., Fujii, Y., Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2 (2002) Phytochemistry, 61, pp. 693-698. , COI: 1:CAS:528:DC%2BD38Xotlynt7s%3D 
504 |a Huang, X., Wei, Z., Zhao, G., Gao, X., Yang, S., Cui, Y., Optimization of sterilization of Escherichia coli in milk by surfactin and fengycin using a response surface method (2008) Curr Microbiol, 56, pp. 376-381. , COI: 1:CAS:528:DC%2BD1cXisFClsLY%3D 
504 |a Hue, N., Serani, L., Laprévote, O., Structural investigation of cyclic peptidolipids from Bacillus subtilis by high-energy tándem mass spectrometry (2001) Rapid Commun Mass Spectrom, 15, pp. 203-209. , COI: 1:CAS:528:DC%2BD3MXht1Kmtb0%3D 
504 |a Imran, M., Revol-Junelles, A.M., Paris, C., Guedon, E., Linder, M., Desobry, S., Liposomal nanodelivery systems using soy and marine lecithin to encapsulate food biopreservative nisin (2014) LWT-Food Sci Technol 
504 |a Kaewklom, S., Lumlert, S., Kraikulb, W., Aunpada, R., Control of Listeria monocytogenes on sliced bologna sausage using a novel bacteriocin, amysin, produced by Bacillus amyloliquefaciens isolated from Thai shrimp paste (Kapi) (2013) Food Control, 32, pp. 552-557. , COI: 1:CAS:528:DC%2BC3sXksFeqtLY%3D 
504 |a Khochamit, N., Siripornadulsil, S., Sukon, P., Siripornadulsil, W., Antibacterial activity and genotypic-phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: potential as a probiotic strain (2015) Microbiol Res, 170, pp. 36-50. , COI: 1:CAS:528:DC%2BC2cXhvVamsLjO 
504 |a Kim, P., Ryu, J., Kim, Y., ChI, Y.-T., Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus Subtilis CMB32 for control of Colletotrichum gloeosporioides (2010) J Microbiol Biotechnol, 20, pp. 138-145. , COI: 1:CAS:528:DC%2BC3cXislOqsL4%3D 
504 |a Lee, N.K., Yeo, I.C., Park, J.W., Kang, B.S., Hahm, Y.T., Isolation and characterization of a novel analyte from Bacillus subtilis SC-8 antagonistic to Bacillus cereus (2010) J Biosci Bioeng, 110, pp. 298-303. , COI: 1:CAS:528:DC%2BC3cXhsVKrtr3M 
504 |a Leenders, F., Stein, T.H., Kablitz, B., Franke, P., Vater, J., Rapid typing of Bacillus subtilis strains by their secondary metabolites using matrix-assisted laser desorption/ionization mass spectrometry of intact cells (1999) Rapid Commun Mass Spectrom, 13, pp. 943-949. , COI: 1:CAS:528:DyaK1MXjsVyntbc%3D 
504 |a Lunden, J., Autio, T., Markkula, A., Hellstrom, S., Korkeala, H., Adaptive and cross-adaptive responses of persistent and non-persistent Listeria monocytogenes strains to disinfectants (2003) Int J Food Microbiol, 82, pp. 265-272. , COI: 1:CAS:528:DC%2BD3sXht1Gnsb4%3D 
504 |a Maria-Neto, S., Candido Ede, S., Rodrigues, D.R., de Sousa, D.A., da Silva, E.M., de Moraes, L.M., Otero-Gonzalez Ade, J., Franco, O.L., Deciphering the magainin resistance process of Escherichia coli strains in light of the cytosolic proteome (2012) Antimicrob Agents Chemother, 56, pp. 1714-1724. , COI: 1:CAS:528:DC%2BC38XltV2rurk%3D 
504 |a Miller, J.H., (1972) Experiments in molecular genetics, , Cold Spring Harbor Laboratory Cold Spring Harbor, New York 
504 |a Mukherjee, A.K., Das, K., Correlation between diverse cyclic lipopeptides production and regulation of growth and substrate utilization by Bacillus subtilis strains in a particular habitat (2005) FEMS Microbiol Ecol, 54, pp. 479-489. , COI: 1:CAS:528:DC%2BD2MXhtFSisb%2FI 
504 |a Nakamura, L.K., Roberts, M.S., Cohan, F.M., Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizizenii subsp. nov (1999) Int J Syst Evol Microbiol, 49, pp. 1211-1215. , COI: 1:CAS:528:DyaK1MXltVyqtLw%3D 
504 |a Nonami, H., Fukui, S., Erra-Balsells, R., β-Carboline alkaloids as matrices for matrix-assisted ultraviolet laser desorption time-of flight mass spectrometry of proteins and sulfated oligosaccharides: a comparative study using phenylcarbonyl compounds, carbazoles and classical matrices (1997) J Mass Spectrom, 32, pp. 287-296. , COI: 1:CAS:528:DyaK2sXitV2jtb0%3D 
504 |a Oka, K., Hirano, T., Homma, M., Ishii, H., Murakami, K., Mogami, S., Motizuki, A., Itokawa, H., Satisfactory separation and MS-MS spectrometry of six surfactins isolated from Bacillus subtilis natto (1993) Chem Pharm Bull, 41, pp. 1000-1002. , COI: 1:CAS:528:DyaK3sXmt1Wjt7k%3D 
504 |a Ongena, M., Jacques, P., Bacillus lipopeptides: versatile weapons for plant disease biocontrol (2008) Trends Microbiol, 16, pp. 115-125. , COI: 1:CAS:528:DC%2BD1cXjtVKksbs%3D 
504 |a Ouoba, L.I., Diawara, B., Jespersen, L., Jakobsen, M., Antimicrobial activity of Bacillus subtilis and Bacillus pumilus during the fermentation of African locust bean (Parkia biglobosa) for Soumbala production (2007) J Appl Microbiol, 102, pp. 963-970. , COI: 1:CAS:528:DC%2BD2sXltFKht7o%3D 
504 |a Pandey, H., Kumar, V., Roy, B.K., Assessment of genotoxicity of some common food preservatives using Allium cepa L. as a test plant (2014) Toxicol Rep, 1, pp. 300-308. , COI: 1:CAS:528:DC%2BC2MXlvFWktbc%3D 
504 |a Patel, H., Tscheka, C., Edwards, K., Karlsson, G., Heerklotz, H., All-or-none membrane permeabilization by fengycin-type lipopeptides from Bacillus subtilis QST713 (2011) Biochim Biophys Acta, 1808, pp. 2000-2008. , COI: 1:CAS:528:DC%2BC3MXntV2msr8%3D 
504 |a Pathak, K.V., Keharia, H., Identification of surfactins and iturins produced by potent fungal antagonist, Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) tree using mass spectrometry. 3 (2014) Biotech, 4, pp. 283-295 
504 |a Pedersen, P.B., Bjørnvad, M.E., Rasmussen, M.D., Petersen, J.N., Cytotoxic potential of industrial strains of Bacillus sp (2002) Regul Toxicol Pharmacol, 36, pp. 155-161. , COI: 1:CAS:528:DC%2BD38XovVyhsb8%3D 
504 |a Porwal, S., Lal, S., Cheema, S., Kalia, V.C., Phylogeny in aid of the present and novel microbial lineages: diversity in Bacillus (2009) PLoS One, 4, p. 4438 
504 |a Price, N.P., Rooney, A.P., Swezey, J.L., Perry, E., Cohan, F.M., Mass spectrometric analysis of lipopeptides from Bacillus strains isolated from diverse geographical locations (2007) FEMS Microbiol Lett, 271, pp. 83-89. , COI: 1:CAS:528:DC%2BD2sXlslSlsL8%3D 
504 |a Romero, D., de Vicente, A., Rakotoaly, R.H., Dufour, S.E., Veening, J.W., Arrebola, E., Cazorla, F.M., Pérez-García, A., The itulin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca (2007) Mol Plant Microbe Interact, 20, pp. 430-440. , COI: 1:CAS:528:DC%2BD2sXjsVyksLk%3D 
504 |a Rooney, A.P., Price, N.P.J., Ehrhardt, C., Swezey, J.L., Bannan, J.D., Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov (2009) Int J Syst Evol Microbiol, 59, pp. 2429-2436. , COI: 1:CAS:528:DC%2BD1MXhsVeitbfL 
504 |a Sabaté, D.C., Audisio, M.C., Inhibitory activity of surfactin, produced by different Bacillus subtilis subsp. subtilis strains, against Listeria monocytogenes sensitive and bacteriocin-resistant strains (2013) Microbiol Res, 168, pp. 125-129 
504 |a Sabaté, D.C., Carrillo, L., Audisio, M.C., Inhibition of Paenibacillus larvae and Ascosphaera apis by Bacillus subtilis isolated from honeybee gut and honey samples (2009) Res Microbiol, 160, pp. 193-199 
504 |a Savadogo, A., Tapi, A., Chollet, M., Wathelet, B., Traore, A.S., Jacques, P., Identification of surfactin producing strains in Soumbala and Bikalga fermented condiments using polymerase chain reaction and matrix assisted laser desorption/ionization-mass spectrometry methods (2011) Int J Food Microbiol, 151, pp. 299-306. , COI: 1:CAS:528:DC%2BC3MXhsVOhtb3I 
504 |a Seydlova, G., Svobodova, J., Review of surfactin chemical properties and the potential biomedical applications (2008) Cent Eur J Med, 3, pp. 123-133. , COI: 1:CAS:528:DC%2BD1cXpsVGhurk%3D 
504 |a Sun, L., Lu, Z., Bie, X., Lu, F., Yang, S., Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi (2006) World J Microbiol Biotechnol, 22, pp. 1259-1266. , COI: 1:CAS:528:DC%2BD28Xht1ertLzI 
504 |a Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol Biol Evol, 28, pp. 2731-2739. , COI: 1:CAS:528:DC%2BC3MXht1eiu73K 
504 |a Tang, J.-S., Zhao, F., Gao, H., Dai, Y., Yao, Z.-H., Hong, K., Li, J., Yao, X.-S., Characterization and online detection of surfactins isomers based on HPLC-MS analyses and their inhibitory effects on the overproduction of nitric oxide and the release of TNF-α and IL-6 in LPS-induces macrophages (2010) Mar Drugs, 8, pp. 2605-2618. , COI: 1:CAS:528:DC%2BC3cXhtlSltL%2FJ 
504 |a Teixeira, M.L., Dalla Rosa, A., Brandelli, A., Characterization of an antimicrobial peptide produced by Bacillus subtilis subsp. spizezinii showing inhibitory activity towards Haemophilus parasuis (2013) Microbiology, 159, pp. 980-988. , COI: 1:CAS:528:DC%2BC3sXptlKksLY%3D 
504 |a Thasana, N., Prapagdee, B., Rangkadilok, N., Sallabhan, R., Aye, S.L., Ruchirawat, S., Loprasert, S., Bacillus subtilis SSE4 produces subtulene A, a new lipopeptide antibiotic possessing an unusual C15 unsaturated beta-amino acid (2010) FEBS Lett, 584, pp. 3209-3214. , COI: 1:CAS:528:DC%2BC3cXosVygsbw%3D 
504 |a Vater, J., Kablitz, B., Wilde, C., Franke, P., Mehta, N., Cameotra, S.S., Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge (2002) Appl Environ Microbiol, 68, pp. 6210-6219. , COI: 1:CAS:528:DC%2BD38Xptlartb4%3D 
520 3 |a In this work a new Bacillus sp. strain, isolated from honey, was characterized phylogenetically. Its antibacterial activity against three relevant foodborne pathogenic bacteria was studied; the main bioactive metabolites were analyzed using ultraviolet matrix assisted laser desorption-ionization mass spectrometry (UV–MALDI MS). Bacillus CBMDC3f was phylogenetically characterized as Bacillus subtilis subsp. subtilis after rRNA analysis of the 16S subunit and the gyrA gene (access codes Genbank JX120508 and JX120516, respectively). Its antibacterial potential was evaluated against Listeria monocytogenes (9 strains), B. cereus (3 strains) and Staphylococcus aureus ATCC29213. Its cell suspension and cell-free supernatant (CFS) exerted significant anti-Listeria and anti-S. aureus activities, while the lipopeptides fraction (LF) also showed anti-B. cereus effect. The UV-MALDI-MS analysis revealed surfactin, iturin and fengycin in the CFS, whereas surfactin predominated in the LF. The CFS from CBMDC3f contained surfactin, iturin and fengycin with four, two and four homologues per family, respectively, whereas four surfactin, one iturin and one fengycin homologues were identified in the LF. For some surfactin homologues, their UV-MALDI-TOF/TOF (MS/MS; Laser Induced Decomposition method, LID) spectra were also obtained. Mass spectrometry analysis contributed with relevant information about the type of lipopeptides that Bacillus strains can synthesize. From our results, surfactin would be the main metabolite responsible for the antibacterial effect. © 2015, Springer Science+Business Media Dordrecht.  |l eng 
593 |a Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Av.Bolivia 5150, Salta, 4400, Argentina 
593 |a CIHIDECAR-CONICET, Departamento de Química Orgánica, Universidad de Buenos Aires, Pabellón II, 3 Ciudad Universitaria, Buenos Aires, 1428, Argentina 
690 1 0 |a BACILLUS SUBTILIS SUBSP. SUBTILIS 
690 1 0 |a FOODBORNE PATHOGENS 
690 1 0 |a LIPOPEPTIDE HOMOLOGUES 
690 1 0 |a SURFACTIN 
690 1 0 |a UV-MALDI-TOF MS 
690 1 0 |a BACTERIA 
690 1 0 |a BACTERIOLOGY 
690 1 0 |a CELL CULTURE 
690 1 0 |a DISEASES 
690 1 0 |a INDUCTIVELY COUPLED PLASMA 
690 1 0 |a LISTERIA 
690 1 0 |a MASS SPECTROMETRY 
690 1 0 |a METABOLITES 
690 1 0 |a PATHOGENS 
690 1 0 |a POLYPEPTIDES 
690 1 0 |a RNA 
690 1 0 |a SPECTROMETRY 
690 1 0 |a STRAIN 
690 1 0 |a FOOD-BORNE PATHOGENS 
690 1 0 |a LIPOPEPTIDES 
690 1 0 |a MALDI TOF MS 
690 1 0 |a SUBTILIS 
690 1 0 |a SURFACTIN 
690 1 0 |a FOOD MICROBIOLOGY 
690 1 0 |a ANTIINFECTIVE AGENT 
690 1 0 |a BACTERIAL DNA 
690 1 0 |a BIOLOGICAL PRODUCT 
690 1 0 |a DNA TOPOISOMERASE (ATP HYDROLYSING) 
690 1 0 |a RIBOSOME DNA 
690 1 0 |a RNA 16S 
690 1 0 |a BACILLUS SUBTILIS 
690 1 0 |a CHEMISTRY 
690 1 0 |a CLASSIFICATION 
690 1 0 |a CLUSTER ANALYSIS 
690 1 0 |a DNA SEQUENCE 
690 1 0 |a FOOD CONTROL 
690 1 0 |a GENETICS 
690 1 0 |a GRAM POSITIVE BACTERIUM 
690 1 0 |a GROWTH, DEVELOPMENT AND AGING 
690 1 0 |a ISOLATION AND PURIFICATION 
690 1 0 |a MASS SPECTROMETRY 
690 1 0 |a METABOLISM 
690 1 0 |a MOLECULAR GENETICS 
690 1 0 |a PHYLOGENY 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a ULTRAVIOLET SPECTROPHOTOMETRY 
690 1 0 |a ANTI-BACTERIAL AGENTS 
690 1 0 |a BACILLUS SUBTILIS 
690 1 0 |a BIOLOGICAL PRODUCTS 
690 1 0 |a CLUSTER ANALYSIS 
690 1 0 |a DNA GYRASE 
690 1 0 |a DNA, BACTERIAL 
690 1 0 |a DNA, RIBOSOMAL 
690 1 0 |a FOOD MICROBIOLOGY 
690 1 0 |a GRAM-POSITIVE BACTERIA 
690 1 0 |a MOLECULAR SEQUENCE DATA 
690 1 0 |a PHYLOGENY 
690 1 0 |a RNA, RIBOSOMAL, 16S 
690 1 0 |a SEQUENCE ANALYSIS, DNA 
690 1 0 |a SPECTROMETRY, MASS, MATRIX-ASSISTED LASER DESORPTION-IONIZATION 
690 1 0 |a SPECTROPHOTOMETRY, ULTRAVIOLET 
650 1 7 |2 spines  |a ANTIBIOSIS 
650 1 7 |2 spines  |a ANTIBIOSIS 
700 1 |a Petroselli, G. 
700 1 |a Daz, M. 
700 1 |a Erra-Balsells, R. 
700 1 |a Audisio, M.C. 
773 0 |d Kluwer Academic Publishers, 2015  |g v. 31  |h pp. 929-940  |k n. 6  |p World J. Microbiol. Biotechnol.  |x 09593993  |t World Journal of Microbiology and Biotechnology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84937758640&doi=10.1007%2fs11274-015-1847-9&partnerID=40&md5=63ecc766bbbaae31ca2632a1d2724ed5  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11274-015-1847-9  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09593993_v31_n6_p929_Torres  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09593993_v31_n6_p929_Torres  |y Registro en la Biblioteca Digital 
961 |a paper_09593993_v31_n6_p929_Torres  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 85672