Copyrolysis of peanut shells and cassava starch mixtures: Effect of the components proportion

Abstract Copyrolysis of peanut (Arachis hypogaea) shells and cassava (Manihot esculenta) starch using mixtures of different proportions was examined to improve yield of the bio-oil and its quality. Pyrolysis of the individual components was also investigated in order to quantify the improvement of t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Gurevich Messina, L.I
Otros Autores: Bonelli, P.R, Cukierman, A.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Abstract Copyrolysis of peanut (Arachis hypogaea) shells and cassava (Manihot esculenta) starch using mixtures of different proportions was examined to improve yield of the bio-oil and its quality. Pyrolysis of the individual components was also investigated in order to quantify the improvement of the measured properties. The kinetics of pyrolysis/copyrolysis was characterized by thermogravimetrical analysis and the application of two different models: one which takes into account the deactivation of the solid, and another one which assumes a normal distribution of the activation energy. Interactions between the starch and the shells were inferred since maximum reaction rates were, in all cases, lower than the weighed average values obtained for the pyrolysis of the individual components. Furthermore, both the bio-oil yield and the water content of the liquids showed synergistic effects. A mixture composed by 75 wt% of starch and 25 wt% of peanut shells led to maximize the yield of the bio-oil (58.2 wt%), while its water content was reduced in 3.4% in comparison with the value expected from the weighed average of the individual results. On the other hand, the addition of the starch to the peanut shells led to a bio-char with less ash content. It could be more suitable for further combustion in steam boilers. © 2015 Elsevier B.V.
Bibliografía:Long, H., Li, X., Wang, H., Jia, J., Biomass resources and their bioenergy potential estimation: a review (2013) Renew. Sustain. Energy Rev., 26, pp. 344-352
Bonelli, P.R., Nunell, G.V., Fernandez, M.E., Buonomo, E.L., Cukierman, A.L., The potential applications of the bio-char derived from the pyrolysis of an agro-industrial waste. Effects of temperature and acid-pretreatment (2012) Energy Sources Part A Recover. Util. Environ. Effects, 34, pp. 746-755
Adrados, A., Lopez-Urionabarrenechea, A., Solar, J., Requies, J., De Marco, I., Cambra, J.F., Upgrading of pyrolysis vapours from biomass carbonization (2013) J. Anal. Appl. Pyrolysis, 103, pp. 293-299
Naik, S., Goud, V.V., Rout, P.K., Jacobson, K., Dalai, A.K., Characterization of Canadian biomass for alternative renewable biofuel (2010) Renew. Energy, 35, pp. 1624-1631
Cukierman, A.L., Nunell, G.V., Fernandez, M.E., De Celis, J., Kim, M.R., Gurevich Messina, L., Bonelli, P.R., Thermochemical processing of wood from invasive arboreal species for sustainable bioenergy generation and activated carbons production (2012) Invasive Species: Threats, Ecological Impact and Control Methods, pp. 1-45. , J.J. Blanco, A.T. Fernandes, Nova Publishers Inc. New York
Zhang, L., Xu, C., Champagne, P., Overview of recent advances in thermo-chemical conversion of biomass (2010) Energy Convers. Manage., 51, pp. 969-982
Bridgwater, A.V., Review of fast pyrolysis of biomass and product upgrading (2012) Biomass Bioenergy, 38, pp. 68-94
Fan, J., Kalnes, T.N., Alward, M., Klinger, J., Sadehvandi, A., Shonnard, D.R., Life cycle assessment of electricity generation using fast pyrolysis bio-oil (2011) Renew. Energy, 36, pp. 632-641
Jacobson, K., Maheria, K.C., Kumar Dalai, A., Bio-oil valorization: a review (2013) Renew. Sustain. Energy Rev., 23, pp. 91-106
Abnisa, F., Wan Daud, W.M.A., A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil (2014) Energy Convers. Manage., 87, pp. 71-85
Thegarid, N., Fogassy, G., Schuurman, Y., Mirodatos, C., Stefanidis, S., Iliopoulou, E.F., Kalogiannis, K., Lappas, A.A., Second-generation biofuels by co-processing catalytic pyrolysis oil in FCC units (2014) Appl. Catal. B Environ., 145, pp. 161-166
Aho, A., Salmi, T., Yu Murzin, D., Catalytic pyrolysis of lignocellulosic biomass (2013) The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio-Chemicals, pp. 137-159. , K.S. Triantafyllidis, A.A. Lappas, M. Stöcker, Elsevier Inc. London
Cornelissen, T., Jans, M., Stals, M., Kuppens, T., Thewys, T., Janssens, G.K., Pastijn, H., Carleer, R., Flash co-pyrolysis of biomass: the influence of biopolymers (2009) J. Anal. Appl. Pyrolysis, 85, pp. 87-97
Wright, M.M., Daugaard, D.E., Satrio, J.A., Brown, R.C., Techno-economic analysis of biomass fast pyrolysis to transportation fuels (2010) Fuel, 89, pp. S2-S10
Teixeira, E.D.M., Curvelo, A.A.S., Corrêa, A.C., Marconcini, J.M., Glenn, G.M., Mattoso, L.H.C., Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid) (2012) Ind. Crops Prod., 37, pp. 61-68
FAOSTAT, Browse Data, Publication, Crops. Food and Agriculture Organization of the United Nations, , http://faostat3fao.org/browse/Q/QC/E
Jyothi, A.N., Sasikiran, K., Nambisan, B., Balagopalan, C., Optimisation of glutamic acid production from cassava starch factory residues using Brevibacterium divaricatum (2005) Process Biochem., 40, pp. 3576-3579
Muñoz, V., Ibañez, F., Tonelli, M.L., Valetti, L., Anzuay, M.S., Fabra, A., Phenotypic and phylogenetic characterization of native peanut Bradyrhizobium isolates obtained from Córdoba, Argentina (2011) Syst. Appl. Microbiol., 34, pp. 446-452
Duan, F., Zhang, J.-P., Chyang, C.-S., Wang, Y.-J., Tso, J., Combustion of crushed and pelletized peanut shells in a pilot-scale fluidized-bed combustor with flue gas recirculation (2014) Fuel Process. Technol., 128, pp. 28-35
Arromdee, P., Kuprianov, V.I., Combustion of peanut shells in a cone-shaped bubbling fluidized-bed combustor using alumina as the bed material (2012) Appl. Energy, 97, pp. 470-482
Rhodes, M., (2008) Introduction to Particle Technology, , second ed. John Wiley & Sons, Inc. Chichester
Wang, S., Guo, X., Wang, K., Luo, Z., Influence of the interaction of components on the pyrolysis behavior of biomass (2011) J. Anal. Appl. Pyrolysis, 91, pp. 183-189
Liu, Q., Wang, S., Zheng, Y., Luo, Z., Cen, K., Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis (2008) J. Anal. Appl. Pyrolysis, 82, pp. 170-177
Nunell, G.V., Fernandez, M.E., Bonelli, P.R., Cukierman, A.L., Conversion of biomass from an invasive species into activated carbons for removal of nitrate from wastewater (2012) Biomass Bioenergy, 44, pp. 87-95
Raveendran, K., Ganesh, A., Adsorption characteristics and of biomass-pyrolysis char (1998) Fuel, 77, pp. 769-781
Rolland-Sabaté, A., Sánchez, T., Buléon, A., Colonna, P., Jaillais, B., Ceballos, H., Dufour, D., Structural characterization of novel cassava starches with low and high-amylose contents in comparison with other commercial sources (2012) Food Hydrocolloids, 27, pp. 161-174
Xu, F., Yu, J., Tesso, T., Dowell, F., Wang, D., Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review (2013) Appl. Energy, 104, pp. 801-809
Yuan, T., Tahmasebi, A., Yu, J., Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor (2015) Bioresour. Technol., 175, pp. 333-341
Collard, F.-X., Blin, J., A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin (2014) Renew. Sustain. Energy Rev., 38, pp. 594-608
Marques, P.T., Lima, A.M.F., Bianco, G., Laurindo, J.B., Borsali, R., Le Meins, J.-F., Soldi, V., Thermal properties and stability of cassava starch films cross-linked with tetraethylene glycol diacrylate (2006) Polym. Degrad. Stab., 91, pp. 726-732
Bonelli, P.R., Cerrella, E.G., Cukierman, A.L., Slow pyrolysis of nutshells: characterization of derived chars and process kinetics (2003) Energy Sources Recover. Util. Environ. Effects, 30, pp. 767-778
White, J.E., Catallo, W.J., Legendre, B.L., Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies (2011) J. Anal. Appl. Pyrolysis, 91, pp. 1-33
Cai, J., Liu, R., New distributed activation energy model: numerical solution and application to pyrolysis kinetics of some types of biomass (2008) Bioresour. Technol., 99, pp. 2795-2799
García Barneto, A., Ariza Carmona, J., Martín Alfonso, J.E., Sánchez Serrano, R., Simulation of the thermogravimetry analysis of three non-wood pulps (2010) Bioresour. Technol., 101, pp. 3220-3229
Zhang, X., Xu, M., Sun, R., Sun, L., Study on biomass pyrolysis kinetics (2004) J. Eng. Gas Turbines Power, 128, pp. 493-496
Balci, S., Dogu, T., Yucel, H., Pyrolysis kinetics of lignocellulosic materials (1993) Ind. Eng. Chem. Res., 32, pp. 2573-2579
Patwardhan, P.R., Satrio, J.A., Brown, R.C., Shanks, B.H., Influence of inorganic salts on the primary pyrolysis products of cellulose (2010) Bioresour. Technol., 101, pp. 4646-4655
Liu, X., Yu, L., Liu, H., Chen, L., Li, L., Thermal decomposition of corn starch with different amylose/amylopectin ratios in open and sealed systems (2009) Cereal Chem., 86, pp. 383-385
Lin, T., Goos, E., Riedel, U., A sectional approach for biomass: modelling the pyrolysis of cellulose (2013) Fuel Process. Technol., 115, pp. 246-253
Jiang, L., Hu, S., Sun, L., Su, S., Xu, K., He, L., Xiang, J., Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass (2013) Bioresour. Technol., 146, pp. 254-260
Cornelissen, T., Yperman, J., Reggers, G., Schreurs, S., Carleer, R., Flash co-pyrolysis of biomass with polylactic acid. Part 1: influence on bio-oil yield and heating value (2008) Fuel, 87, pp. 1031-1041
Cao, J.-P., Zhao, X.-Y., Morishita, K., Wei, X.-Y., Takarada, T., Fractionation and identification of organic nitrogen species from bio-oil produced by fast pyrolysis of sewage sludge (2010) Bioresour. Technol., 101, pp. 7648-7652
Patwardhan, P.R., Satrio, J.A., Brown, R.C., Shanks, B.H., Product distribution from fast pyrolysis of glucose-based carbohydrates (2009) J. Anal. Appl. Pyrolysis, 86, pp. 323-330
Cornelissen, T., Jans, M., Yperman, J., Reggers, G., Schreurs, S., Carleer, R., Flash co-pyrolysis of biomass with polyhydroxybutyrate: part 1. Influence on bio-oil yield, water content, heating value and the production of chemicals (2008) Fuel, 87, pp. 2523-2532
Kim, T.-S., Kim, J.-Y., Kim, K.-H., Lee, S., Choi, D., Choi, I.-G., Choi, J.W., The effect of storage duration on bio-oil properties (2012) J. Anal. Appl. Pyrolysis, 95, pp. 118-125
Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C., Characteristics of hemicellulose, cellulose and lignin pyrolysis (2007) Fuel, 86, pp. 1781-1788
ISSN:01652370
DOI:10.1016/j.jaap.2015.03.017