Copyrolysis of peanut shells and cassava starch mixtures: Effect of the components proportion

Abstract Copyrolysis of peanut (Arachis hypogaea) shells and cassava (Manihot esculenta) starch using mixtures of different proportions was examined to improve yield of the bio-oil and its quality. Pyrolysis of the individual components was also investigated in order to quantify the improvement of t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Gurevich Messina, L.I
Otros Autores: Bonelli, P.R, Cukierman, A.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14075caa a22012137a 4500
001 PAPER-24708
003 AR-BaUEN
005 20230518205637.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84930753975 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JAAPD 
100 1 |a Gurevich Messina, L.I. 
245 1 0 |a Copyrolysis of peanut shells and cassava starch mixtures: Effect of the components proportion 
260 |b Elsevier B.V.  |c 2015 
270 1 0 |m Cukierman, A.L.; Departamento de Industrias, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2620, Argentina; email: analea@di.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Long, H., Li, X., Wang, H., Jia, J., Biomass resources and their bioenergy potential estimation: a review (2013) Renew. Sustain. Energy Rev., 26, pp. 344-352 
504 |a Bonelli, P.R., Nunell, G.V., Fernandez, M.E., Buonomo, E.L., Cukierman, A.L., The potential applications of the bio-char derived from the pyrolysis of an agro-industrial waste. Effects of temperature and acid-pretreatment (2012) Energy Sources Part A Recover. Util. Environ. Effects, 34, pp. 746-755 
504 |a Adrados, A., Lopez-Urionabarrenechea, A., Solar, J., Requies, J., De Marco, I., Cambra, J.F., Upgrading of pyrolysis vapours from biomass carbonization (2013) J. Anal. Appl. Pyrolysis, 103, pp. 293-299 
504 |a Naik, S., Goud, V.V., Rout, P.K., Jacobson, K., Dalai, A.K., Characterization of Canadian biomass for alternative renewable biofuel (2010) Renew. Energy, 35, pp. 1624-1631 
504 |a Cukierman, A.L., Nunell, G.V., Fernandez, M.E., De Celis, J., Kim, M.R., Gurevich Messina, L., Bonelli, P.R., Thermochemical processing of wood from invasive arboreal species for sustainable bioenergy generation and activated carbons production (2012) Invasive Species: Threats, Ecological Impact and Control Methods, pp. 1-45. , J.J. Blanco, A.T. Fernandes, Nova Publishers Inc. New York 
504 |a Zhang, L., Xu, C., Champagne, P., Overview of recent advances in thermo-chemical conversion of biomass (2010) Energy Convers. Manage., 51, pp. 969-982 
504 |a Bridgwater, A.V., Review of fast pyrolysis of biomass and product upgrading (2012) Biomass Bioenergy, 38, pp. 68-94 
504 |a Fan, J., Kalnes, T.N., Alward, M., Klinger, J., Sadehvandi, A., Shonnard, D.R., Life cycle assessment of electricity generation using fast pyrolysis bio-oil (2011) Renew. Energy, 36, pp. 632-641 
504 |a Jacobson, K., Maheria, K.C., Kumar Dalai, A., Bio-oil valorization: a review (2013) Renew. Sustain. Energy Rev., 23, pp. 91-106 
504 |a Abnisa, F., Wan Daud, W.M.A., A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil (2014) Energy Convers. Manage., 87, pp. 71-85 
504 |a Thegarid, N., Fogassy, G., Schuurman, Y., Mirodatos, C., Stefanidis, S., Iliopoulou, E.F., Kalogiannis, K., Lappas, A.A., Second-generation biofuels by co-processing catalytic pyrolysis oil in FCC units (2014) Appl. Catal. B Environ., 145, pp. 161-166 
504 |a Aho, A., Salmi, T., Yu Murzin, D., Catalytic pyrolysis of lignocellulosic biomass (2013) The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio-Chemicals, pp. 137-159. , K.S. Triantafyllidis, A.A. Lappas, M. Stöcker, Elsevier Inc. London 
504 |a Cornelissen, T., Jans, M., Stals, M., Kuppens, T., Thewys, T., Janssens, G.K., Pastijn, H., Carleer, R., Flash co-pyrolysis of biomass: the influence of biopolymers (2009) J. Anal. Appl. Pyrolysis, 85, pp. 87-97 
504 |a Wright, M.M., Daugaard, D.E., Satrio, J.A., Brown, R.C., Techno-economic analysis of biomass fast pyrolysis to transportation fuels (2010) Fuel, 89, pp. S2-S10 
504 |a Teixeira, E.D.M., Curvelo, A.A.S., Corrêa, A.C., Marconcini, J.M., Glenn, G.M., Mattoso, L.H.C., Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid) (2012) Ind. Crops Prod., 37, pp. 61-68 
504 |a FAOSTAT, Browse Data, Publication, Crops. Food and Agriculture Organization of the United Nations, , http://faostat3fao.org/browse/Q/QC/E 
504 |a Jyothi, A.N., Sasikiran, K., Nambisan, B., Balagopalan, C., Optimisation of glutamic acid production from cassava starch factory residues using Brevibacterium divaricatum (2005) Process Biochem., 40, pp. 3576-3579 
504 |a Muñoz, V., Ibañez, F., Tonelli, M.L., Valetti, L., Anzuay, M.S., Fabra, A., Phenotypic and phylogenetic characterization of native peanut Bradyrhizobium isolates obtained from Córdoba, Argentina (2011) Syst. Appl. Microbiol., 34, pp. 446-452 
504 |a Duan, F., Zhang, J.-P., Chyang, C.-S., Wang, Y.-J., Tso, J., Combustion of crushed and pelletized peanut shells in a pilot-scale fluidized-bed combustor with flue gas recirculation (2014) Fuel Process. Technol., 128, pp. 28-35 
504 |a Arromdee, P., Kuprianov, V.I., Combustion of peanut shells in a cone-shaped bubbling fluidized-bed combustor using alumina as the bed material (2012) Appl. Energy, 97, pp. 470-482 
504 |a Rhodes, M., (2008) Introduction to Particle Technology, , second ed. John Wiley & Sons, Inc. Chichester 
504 |a Wang, S., Guo, X., Wang, K., Luo, Z., Influence of the interaction of components on the pyrolysis behavior of biomass (2011) J. Anal. Appl. Pyrolysis, 91, pp. 183-189 
504 |a Liu, Q., Wang, S., Zheng, Y., Luo, Z., Cen, K., Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis (2008) J. Anal. Appl. Pyrolysis, 82, pp. 170-177 
504 |a Nunell, G.V., Fernandez, M.E., Bonelli, P.R., Cukierman, A.L., Conversion of biomass from an invasive species into activated carbons for removal of nitrate from wastewater (2012) Biomass Bioenergy, 44, pp. 87-95 
504 |a Raveendran, K., Ganesh, A., Adsorption characteristics and of biomass-pyrolysis char (1998) Fuel, 77, pp. 769-781 
504 |a Rolland-Sabaté, A., Sánchez, T., Buléon, A., Colonna, P., Jaillais, B., Ceballos, H., Dufour, D., Structural characterization of novel cassava starches with low and high-amylose contents in comparison with other commercial sources (2012) Food Hydrocolloids, 27, pp. 161-174 
504 |a Xu, F., Yu, J., Tesso, T., Dowell, F., Wang, D., Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review (2013) Appl. Energy, 104, pp. 801-809 
504 |a Yuan, T., Tahmasebi, A., Yu, J., Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor (2015) Bioresour. Technol., 175, pp. 333-341 
504 |a Collard, F.-X., Blin, J., A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin (2014) Renew. Sustain. Energy Rev., 38, pp. 594-608 
504 |a Marques, P.T., Lima, A.M.F., Bianco, G., Laurindo, J.B., Borsali, R., Le Meins, J.-F., Soldi, V., Thermal properties and stability of cassava starch films cross-linked with tetraethylene glycol diacrylate (2006) Polym. Degrad. Stab., 91, pp. 726-732 
504 |a Bonelli, P.R., Cerrella, E.G., Cukierman, A.L., Slow pyrolysis of nutshells: characterization of derived chars and process kinetics (2003) Energy Sources Recover. Util. Environ. Effects, 30, pp. 767-778 
504 |a White, J.E., Catallo, W.J., Legendre, B.L., Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies (2011) J. Anal. Appl. Pyrolysis, 91, pp. 1-33 
504 |a Cai, J., Liu, R., New distributed activation energy model: numerical solution and application to pyrolysis kinetics of some types of biomass (2008) Bioresour. Technol., 99, pp. 2795-2799 
504 |a García Barneto, A., Ariza Carmona, J., Martín Alfonso, J.E., Sánchez Serrano, R., Simulation of the thermogravimetry analysis of three non-wood pulps (2010) Bioresour. Technol., 101, pp. 3220-3229 
504 |a Zhang, X., Xu, M., Sun, R., Sun, L., Study on biomass pyrolysis kinetics (2004) J. Eng. Gas Turbines Power, 128, pp. 493-496 
504 |a Balci, S., Dogu, T., Yucel, H., Pyrolysis kinetics of lignocellulosic materials (1993) Ind. Eng. Chem. Res., 32, pp. 2573-2579 
504 |a Patwardhan, P.R., Satrio, J.A., Brown, R.C., Shanks, B.H., Influence of inorganic salts on the primary pyrolysis products of cellulose (2010) Bioresour. Technol., 101, pp. 4646-4655 
504 |a Liu, X., Yu, L., Liu, H., Chen, L., Li, L., Thermal decomposition of corn starch with different amylose/amylopectin ratios in open and sealed systems (2009) Cereal Chem., 86, pp. 383-385 
504 |a Lin, T., Goos, E., Riedel, U., A sectional approach for biomass: modelling the pyrolysis of cellulose (2013) Fuel Process. Technol., 115, pp. 246-253 
504 |a Jiang, L., Hu, S., Sun, L., Su, S., Xu, K., He, L., Xiang, J., Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass (2013) Bioresour. Technol., 146, pp. 254-260 
504 |a Cornelissen, T., Yperman, J., Reggers, G., Schreurs, S., Carleer, R., Flash co-pyrolysis of biomass with polylactic acid. Part 1: influence on bio-oil yield and heating value (2008) Fuel, 87, pp. 1031-1041 
504 |a Cao, J.-P., Zhao, X.-Y., Morishita, K., Wei, X.-Y., Takarada, T., Fractionation and identification of organic nitrogen species from bio-oil produced by fast pyrolysis of sewage sludge (2010) Bioresour. Technol., 101, pp. 7648-7652 
504 |a Patwardhan, P.R., Satrio, J.A., Brown, R.C., Shanks, B.H., Product distribution from fast pyrolysis of glucose-based carbohydrates (2009) J. Anal. Appl. Pyrolysis, 86, pp. 323-330 
504 |a Cornelissen, T., Jans, M., Yperman, J., Reggers, G., Schreurs, S., Carleer, R., Flash co-pyrolysis of biomass with polyhydroxybutyrate: part 1. Influence on bio-oil yield, water content, heating value and the production of chemicals (2008) Fuel, 87, pp. 2523-2532 
504 |a Kim, T.-S., Kim, J.-Y., Kim, K.-H., Lee, S., Choi, D., Choi, I.-G., Choi, J.W., The effect of storage duration on bio-oil properties (2012) J. Anal. Appl. Pyrolysis, 95, pp. 118-125 
504 |a Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C., Characteristics of hemicellulose, cellulose and lignin pyrolysis (2007) Fuel, 86, pp. 1781-1788 
520 3 |a Abstract Copyrolysis of peanut (Arachis hypogaea) shells and cassava (Manihot esculenta) starch using mixtures of different proportions was examined to improve yield of the bio-oil and its quality. Pyrolysis of the individual components was also investigated in order to quantify the improvement of the measured properties. The kinetics of pyrolysis/copyrolysis was characterized by thermogravimetrical analysis and the application of two different models: one which takes into account the deactivation of the solid, and another one which assumes a normal distribution of the activation energy. Interactions between the starch and the shells were inferred since maximum reaction rates were, in all cases, lower than the weighed average values obtained for the pyrolysis of the individual components. Furthermore, both the bio-oil yield and the water content of the liquids showed synergistic effects. A mixture composed by 75 wt% of starch and 25 wt% of peanut shells led to maximize the yield of the bio-oil (58.2 wt%), while its water content was reduced in 3.4% in comparison with the value expected from the weighed average of the individual results. On the other hand, the addition of the starch to the peanut shells led to a bio-char with less ash content. It could be more suitable for further combustion in steam boilers. © 2015 Elsevier B.V.  |l eng 
593 |a Departamento de Industrias, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2620, Buenos Aires, C1428BGA, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Buenos Aires, C1033AAJ, Argentina 
593 |a Cátedra de Tecnología Farmacéutica II, Departamento de Tecnología Farmacéutica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina 
690 1 0 |a CASSAVA STARCH 
690 1 0 |a COPYROLYSIS 
690 1 0 |a PEANUT SHELLS 
690 1 0 |a WASTE MANAGEMENT 
690 1 0 |a ACTIVATION ANALYSIS 
690 1 0 |a ACTIVATION ENERGY 
690 1 0 |a BIOFUELS 
690 1 0 |a BOILERS 
690 1 0 |a ENGINES 
690 1 0 |a MIXTURES 
690 1 0 |a NORMAL DISTRIBUTION 
690 1 0 |a OILSEEDS 
690 1 0 |a PLANTS (BOTANY) 
690 1 0 |a REACTION RATES 
690 1 0 |a SHELLS (STRUCTURES) 
690 1 0 |a STARCH 
690 1 0 |a WASTE INCINERATION 
690 1 0 |a WASTE MANAGEMENT 
690 1 0 |a CASSAVA STARCH 
690 1 0 |a COPYROLYSIS 
690 1 0 |a DIFFERENT PROPORTIONS 
690 1 0 |a INDIVIDUAL COMPONENTS 
690 1 0 |a KINETICS OF PYROLYSIS 
690 1 0 |a MAXIMUM REACTION RATE 
690 1 0 |a MEASURED PROPERTIES 
690 1 0 |a PEANUT SHELLS 
690 1 0 |a PYROLYSIS 
700 1 |a Bonelli, P.R. 
700 1 |a Cukierman, A.L. 
773 0 |d Elsevier B.V., 2015  |g v. 113  |h pp. 508-517  |p J Anal Appl Pyrolysis  |x 01652370  |w (AR-BaUEN)CENRE-5401  |t Journal of Analytical and Applied Pyrolysis 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84930753975&doi=10.1016%2fj.jaap.2015.03.017&partnerID=40&md5=9a0157a1610aa8bf33d73c9e8095cd09  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jaap.2015.03.017  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01652370_v113_n_p508_GurevichMessina  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01652370_v113_n_p508_GurevichMessina  |y Registro en la Biblioteca Digital 
961 |a paper_01652370_v113_n_p508_GurevichMessina  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85661