An A∞ Operad in Spineless Cacti

The dg operad C of cellular chains on the operad of spineless cacti of Kaufmann (Topology 46(1):39–88, 2007) is isomorphic to the Gerstenhaber–Voronov dg operad codifying the cup product and brace operations on the Hochschild cochains of an associative algebra, and to the suboperad F2X of the surjec...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Gálvez-Carrillo, I.
Otros Autores: Lombardi, L., Tonks, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Birkhauser Verlag AG 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06132caa a22004817a 4500
001 PAPER-24681
003 AR-BaUEN
005 20230518205635.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84945459802 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Gálvez-Carrillo, I. 
245 1 3 |a An A∞ Operad in Spineless Cacti 
260 |b Birkhauser Verlag AG  |c 2015 
270 1 0 |m Tonks, A.; Department of Mathematics, University of Leicester, University Road, United Kingdom 
506 |2 openaire  |e Política editorial 
504 |a Berger, C., Fresse, B., Combinatorial operad actions on cochains (2004) Math. Proc. Camb. Philos. Soc., 137 (1), pp. 135-174 
504 |a Cohen, R.L., Jones, J.D.S., A homotopy theoretic realization of string topology (2002) Math. Ann, 324 (4), pp. 773-798 
504 |a Gerstenhaber, M., Voronov, A.A.: Homotopy G-algebras and moduli space operad. Int. Math. Res. Not., 3, 141–153 (1995) (electronic); http://arxiv.org/abs/hep-th/9403055, Getzler, E., Jones, J.D.S.: Operads, homotopy algebra and iterated integrals for double loop spaces. (1994); Kaufmann, R.M.: On several varieties of cacti and their relations. Algebr. Geom. Topol., 5, 237–300 (2005) (electronic); Kaufmann, R.M., On spineless cacti, Deligne’s conjecture and Connes–Kreimer’s Hopf algebra (2007) Topology, 46 (1), pp. 39-88 
504 |a Kaufmann, R.M., A proof of a cyclic version of Deligne’s conjecture via cacti (2008) Math. Res. Lett., 15 (5), pp. 901-921 
504 |a Kaufmann, R.M., Livernet, M., Penner, R.C.: Arc operads and arc algebras. Geom. Topol., 7, 511–568 (2003) (electronic); Kaufmann, R.M., Schwell, R., Associahedra, cyclohedra and a topological solution to the (Formula Presented.) Deligne conjecture (2010) Adv. Math, 223 (6), pp. 2166-2199 
504 |a Kontsevich, M., Soibelman, Y., Deformations of algebras over operads and the Deligne conjecture (2000) Conférence Moshé Flato 1999, Vol. I (Dijon), Math. Phys. Stud., vol. 21, pp. 255-307. , Kluwer Acad. Publ., Dordrecht 
504 |a Loday, J.-L., Vallette, B., Algebraic operads (2012) Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol, p. 346. , Springer, Heidelberg 
504 |a McClure, J.E., Smith, J.H., A solution of Deligne’s Hochschild cohomology conjecture (2002) Recent progress in homotopy theory (Baltimore, MD, 2000), Contemp. Math., vol. 293, pp. 153-193. , Amer. Math. Soc., Providence 
504 |a McClure, J.E., Smith, J.H.: Multivariable cochain operations and little n-cubes. J. Am. Math. Soc., 16(3), 681–704 (2003) (electronic); Salvatore, P., The topological cyclic Deligne conjecture (2009) Algebr. Geom. Topol, 9 (1), pp. 237-264 
504 |a http://arxiv.org/abs/math/9803025, Tamarkin, D.E.: Another proof of M. Kontsevich formality theorem. (1998); Voronov, A.A., Notes on universal algebra (2005) Graphs and Patterns in Mathematics and Theoretical Physics, Proc. Sympos. Pure Math., vol. 73, pp. 81-103. , Amer. Math. Soc., Providence 
504 |a Zhang, Y., Bai, C., Guo, L., (2012) The category and operad of matching dialgebras. Appl, , Categor, Struct 
504 |a Zinbiel, G.W., Guo, L., Bai, C., Loday, J.-L., Encyclopedia of types of algebras (2010) Operads and universal algebra. Nankai Series in Pure, Applied Mathematics and Theoretical Physics, vol, p. 9. , World Sci. Publ., Hackensack 
520 3 |a The dg operad C of cellular chains on the operad of spineless cacti of Kaufmann (Topology 46(1):39–88, 2007) is isomorphic to the Gerstenhaber–Voronov dg operad codifying the cup product and brace operations on the Hochschild cochains of an associative algebra, and to the suboperad F2X of the surjection operad of Berger and Fresse (Math Proc Camb Philos Soc 137(1):135–174, 2004), McClure and Smith (Recent progress in homotopy theory (Baltimore, MD, 2000). Contemp Math., Amer. Math. Soc., Providence 293:153–193, 2002) and McClure and Smith (J Am Math Soc 16(3):681–704, 2003). Its homology is the Gerstenhaber dg operad G. We construct a map of dg operads ψ: A∞ ⟶ C such that ψ(m2) is commutative and H∗(ψ) is the canonical map A → Com → G. This formalises the idea that, since the cup product is commutative in homology, its symmetrisation is a homotopy associative operation. Our explicit A∞ structure does not vanish on non-trivial shuffles in higher degrees, so does not give a map Com∞ → C. If such a map could be written down explicitly, it would immediately lead to a G∞ structure on C and on Hochschild cochains, that is, to an explicit and direct proof of the Deligne conjecture. © 2015, Springer Basel.  |l eng 
536 |a Detalles de la financiación: Isaac Newton Institute for Mathematical Sciences, INI 
593 |a Departament de Matemàtica Aplicada III, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Terrassa, Carrer Colom 1, Terrassa, Barcelona 08222, Spain 
593 |a Departamento de Matemática, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina 
593 |a Department of Mathematics, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom 
700 1 |a Lombardi, L. 
700 1 |a Tonks, A. 
773 0 |d Birkhauser Verlag AG, 2015  |g v. 12  |h pp. 1215-1226  |k n. 4  |p Mediterr. J. Math.  |x 16605446  |t Mediterranean Journal of Mathematics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84945459802&doi=10.1007%2fs00009-015-0577-4&partnerID=40&md5=58573e92c8f8686a9f21775a0b2b9e5f  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00009-015-0577-4  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_16605446_v12_n4_p1215_GalvezCarrillo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16605446_v12_n4_p1215_GalvezCarrillo  |y Registro en la Biblioteca Digital 
961 |a paper_16605446_v12_n4_p1215_GalvezCarrillo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85634