Origin of the 30 THz Emission Detected During the Solar Flare on 2012 March 13 at 17:20 UT

Solar observations in the infrared domain can bring important clues on the response of the low solar atmosphere to primary energy released during flares. At present, the infrared continuum has been detected at 30 THz (10 μm) in only a few flares. SOL2012-03-13, which is one of these flares, has been...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Trottet, G.
Otros Autores: Raulin, J.-P, Mackinnon, A., Giménez de Castro, G., Simões, P.J.A, Cabezas, D., de La Luz, V., Luoni, M., Kaufmann, P.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Netherlands 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13474caa a22010817a 4500
001 PAPER-24635
003 AR-BaUEN
005 20230518205631.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84947495707 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Trottet, G. 
245 1 0 |a Origin of the 30 THz Emission Detected During the Solar Flare on 2012 March 13 at 17:20 UT 
260 |b Springer Netherlands  |c 2015 
270 1 0 |m Raulin, J.-P.; CRAAM Universidade Presbiteriana MackenzieBrazil 
506 |2 openaire  |e Política editorial 
504 |a Avrett, E.H., Loeser, R., Solar and stellar atmospheric modeling using the pandora computer program (2003) Modelling of Stellar Atmospheres, p. A21. , Piskunov N., Weiss W.W., Gray D.F., (eds), IAU Symp., 210 
504 |a Avrett, E.H., Loeser, R., Models of the solar chromosphere and transition region from SUMER and HRTS observations: formation of the extreme-ultraviolet spectrum of hydrogen, carbon, and oxygen (2008) Astrophys. J. Suppl., 175, p. 229 
504 |a Bagalá, L.G., Bauer, O.H., Fernández Borda, R., Francile, C., Haerendel, G., Rieger, R., Rovira, M.G., The new H(Formula presented.) solar telescope at the German–Argentinian solar observatory (1999) Magnetic Fields and Solar Processes, p. 469. , Wilson A., (ed), SP-448 
504 |a Bai, T., Transport of energetic electrons in a fully ionized hydrogen plasma (1982) Astrophys. J., 259, p. 341 
504 |a Bastian, T.S., Benz, A.O., Gary, D.E., Radio emission from solar flares (1998) Annu. Rev. Astron. Astrophys., 36, p. 131 
504 |a Brown, J.C., The directivity and polarisation of thick target X-ray bremsstrahlung from solar flares (1972) Solar Phys., 26, p. 441 
504 |a Butler, S.T., Buckingham, M.J., Energy loss of a fast ion in a plasma (1962) Phys. Rev., 126, p. 1 
504 |a De la Luz, V., Lara, A., Raulin, J.-P., Synthetic spectra of radio, millimeter, sub-millimeter, and infrared regimes with non-local thermodynamic equilibrium approximation (2011) Astrophys. J., 737, p. 1 
504 |a De la Luz, V., Lara, A., Mendoza-Torres, J.E., Selhorst, C.L., Pakal: a three-dimensional model to solve the radiative transfer equation (2010) Astrophys. J. Suppl., 188, p. 437 
504 |a Deming, D., Jennings, D.E., Jefferies, J., Lindsey, C.: 1991, In: Cox, A.N., Livingston, W.C., Matthews, M.S. (eds.) Physics of the Infrared Spectrum, 933; Emslie, A.G., The collisional interaction of a beam of charged particles with a hydrogen target of arbitrary ionization level (1978) Astrophys. J., 224, p. 241 
504 |a Gould, R.J., Energy loss of a relativistic ion in a plasma (1972) Physica, 58, p. 379 
504 |a Gould, R.J., Energy loss of fast electrons and positrons in a plasma (1972) Physica, 60, p. 145 
504 |a Guidice, D.A., Sagamore Hill Radio Observatory, Air Force Geophysics Laboratory, Hanscom air force base, Massachusetts 01731. Report (1979) Bull. Am. Astron. Soc., 11, p. 311 
504 |a Heinzel, P., Avrett, E.H., Optical-to-radio continua in solar flares (2012) Solar Phys., 277, p. 31 
504 |a Kaufmann, P., Levato, H., Cassiano, M.M., Correia, E., Costa, J.E.R., Giménez de Castro, C.G., Godoy, R., Zakia, M.B., New telescopes for ground-based solar observations at submillimeter and mid-infrared (2008) Soc. Photo-Optical Instr. Eng. (SPIE) Conf. Ser., p. 70120L. , 7012 
504 |a Kaufmann, P., White, S.M., Freeland, S.L., Marcon, R., Fernandes, L.O.T., Kudaka, A.S., de Souza, R.V., Giménez de Castro, C.G., A bright impulsive solar burst detected at 30 THz (2013) Astrophys. J., 768, p. 134 
504 |a Kaufmann, P., Marcon, R., Abrantes, A., Bortolucci, E.C., Fernandes, L.O.T., Kropotov, G.I., Kudaka, A.S., Timofeevsky, A., THz photometers for solar flare observations from space (2014) Exp. Astron., 37, p. 579 
504 |a Kaufmann, P., White, S.M., Marcon, R., Kudaka, A.S., Cabezas, D.P., Cassiano, M.M., Francile, C., de Souza, R.V., Bright 30 THz impulsive solar bursts (2015) J. Geophys. Res., 120, p. 4155 
504 |a Kašparová, J., Heinzel, P., Karlický, M., Moravec, Z., Varady, M., Far-IR and radio thermal continua in solar flares (2009) Cent. Eur. Astrophys. Bull., 33, p. 309 
504 |a Kašparová, J., Varady, M., Heinzel, P., Karlický, M., Moravec, Z., Response of optical hydrogen lines to beam heating. I. Electron beams (2009) Astron. Astrophys., 499, p. 923 
504 |a Kerr, G.S., Fletcher, L., Physical properties of white-light sources in the 2011 February 15 solar flare (2014) Astrophys. J., 783, p. 98 
504 |a Krucker, S., Saint-Hilaire, P., Hudson, H.S., Haberreiter, M., Martinez-Oliveros, J.C., Fivian, M.D., Hurford, G., Arnold, N.G., Co-spatial white light and hard X-ray flare footpoints seen above the solar limb (2015) Astrophys. J., 802, p. 19 
504 |a Machado, M.E., Emslie, A.G., Avrett, E.H., Radiative backwarming in white-light flares (1989) Solar Phys., 124, p. 303 
504 |a Machado, M.E., Avrett, E.H., Vernazza, J.E., Noyes, R.W., Semiempirical models of chromospheric flare regions (1980) Astrophys. J., 242, p. 336 
504 |a MacKinnon, A.L., Toner, M.P., Warm thick target solar gamma-ray source revisited (2003) Astron. Astrophys., 409, p. 745 
504 |a Marcon, R., Kaufmann, P., Melo, A.M., Kudaka, A.S., Tandberg-Hanssen, E., Association of mid-infrared solar plages with calcium K line emissions and magnetic structures (2008) Publ. Astron. Soc. Pac., 120, p. 16 
504 |a Mauas, P.J.D., Machado, M.E., Avrett, E.H., The white-light flare of 1982 June 15 – Models (1990) Astrophys. J., 360, p. 715 
504 |a Meegan, C., Lichti, G., Bhat, P.N., Bissaldi, E., Briggs, M.S., Connaughton, V., Diehl, R., Wilson-Hodge, C., The Fermi gamma-ray burst monitor (2009) Astrophys. J., 702, p. 791 
504 |a Metcalf, T.R., Canfield, R.C., Saba, J.L.R., Flare heating and ionization of the low solar chromosphere. II – Observations of five solar flares (1990) Astrophys. J., 365, p. 391 
504 |a Ohki, K., Hudson, H.S., The solar-flare infrared continuum (1975) Solar Phys., 43, p. 405 
504 |a Olive, K.A., Review of particle physics (2014) Chin. Phys. C, 38 (9). , Particle Data Group 
504 |a Penn, M., Jennings, D., Jhabvala, M., Lunsford, A., Infrared flare observations at 5 and 10 microns (2015) AAS/AGU Triennial Earth–Sun Summit, p. 30704. , 1 
504 |a Pick, M., Vilmer, N., Sixty-five years of solar radioastronomy: flares, coronal mass ejections and Sun Earth connection (2008) Astron. Astrophys. Rev., 16, p. 1 
504 |a Pick, M., Klein, K.-L., Trottet, G., Meter-decimeter and microwave radio observations of solar flares (1990) Astrophys. J. Suppl., 73, p. 165 
504 |a Ramaty, R., Gyrosynchrotron emission and absorption in a magnetoactive plasma (1969) Astrophys. J., 158, p. 753 
504 |a Ramaty, R., Schwartz, R.A., Enome, S., Nakajima, H., Gamma-ray and millimeter-wave emissions from the 1991 June X-class solar flares (1994) Astrophys. J., 436, p. 941 
504 |a Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Tomczyk, S., The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO) (2012) Solar Phys., 275, p. 207 
504 |a Schwartz, R.A., Csillaghy, A., Tolbert, A.K., Hurford, G.J., McTiernan, J., Zarro, D., RHESSI data analysis software: rationale and methods (2002) Solar Phys., 210, p. 165 
504 |a Trottet, G., Klein, K.-L., Far infrared solar physics (2013) Mem. Soc. Astron. Ital., 84, p. 405 
504 |a Trottet, G., Vilmer, N., Barat, C., Benz, A., Magun, A., Kuznetsov, A., Sunyaev, R., Terekhov, O., A multiwavelength analysis of an electron-dominated gamma-ray event associated with a disk solar flare (1998) Astron. Astrophys., 334, p. 1099 
504 |a Trottet, G., Rolli, E., Magun, A., Barat, C., Kuznetsov, A., Sunyaev, R., Terekhov, O., The fast and slow H(Formula presented.) chromospheric responses to non-thermal particles produced during the 1991 March 13 hard X-ray/gamma-ray flare at ˜ 08 UTC (2000) Astron. Astrophys., 356, p. 1067 
504 |a Trottet, G., Krucker, S., Lüthi, T., Magun, A., Radio submillimeter and (Formula presented.)-ray observations of the 2003 October 28 solar flare (2008) Astrophys. J., 678, p. 509 
504 |a Valio, A., Kaufmann, P., Giménez de Castro, C.G., Raulin, J.-P., Fernandes, L.O.T., Marun, A., POlarization Emission of Millimeter Activity at the Sun (POEMAS): new circular polarization solar telescopes at two millimeter wavelength ranges (2013) Solar Phys., 283, p. 651 
520 3 |a Solar observations in the infrared domain can bring important clues on the response of the low solar atmosphere to primary energy released during flares. At present, the infrared continuum has been detected at 30 THz (10 μm) in only a few flares. SOL2012-03-13, which is one of these flares, has been presented and discussed in Kaufmann et al. (Astrophys. J.768, 134, 2013). No firm conclusions were drawn on the origin of the mid-infrared radiation. In this work we present a detailed multi-frequency analysis of the SOL2012-03-13 event, including observations at radio-millimeter and submillimeter wavelengths, in hard X-rays (HXR), gamma-rays (GR), Hα, and white light. The HXR/GR spectral analysis shows that SOL2012-03-13 is a GR line flare and allows estimating the numbers of and energy contents in electrons, protons, and α particles produced during the flare. The energy spectrum of the electrons producing the HXR/GR continuum is consistent with a broken power-law with an energy break at (Formula presented.). We show that the high-energy part ((Formula presented.)) of this distribution is responsible for the high-frequency radio emission ((Formula presented.)) detected during the flare. By comparing the 30 THz emission expected from semi-empirical and time-independent models of the quiet and flare atmospheres, we find that most ((Formula presented.)) of the observed 30 THz radiation can be attributed to thermal free–free emission of an optically thin source. Using the F2 flare atmospheric model (Machado et al. in Astrophys. J.242, 336, 1980), this thin source is found to be at temperatures T (Formula presented.) and is located well above the minimum temperature region. We argue that the chromospheric heating, which results in 80 % of the 30 THz excess radiation, can be due to energy deposition by nonthermal flare-accelerated electrons, protons, and α particles. The remaining 20 % of the 30 THz excess emission is found to be radiated from an optically thick atmospheric layer at T (Formula presented.), below the temperature minimum region, where direct heating by nonthermal particles is insufficient to account for the observed infrared radiation. © 2015, Springer Science+Business Media Dordrecht.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Ciencia y Tecnología, CONACYT, 1045 
536 |a Detalles de la financiación: Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP, 2013/24155-3 
536 |a Detalles de la financiación: Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP, 2015/13596-4 
536 |a Detalles de la financiación: Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, 312788/2013-4 
593 |a LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, Meudon, 92195, France 
593 |a CRAAM Universidade Presbiteriana Mackenzie, São Paulo, Brazil 
593 |a School of Physics and Astronomy, SUPA, University of Glasgow, Glasgow, G12 8QQ, United Kingdom 
593 |a SCiESMEX, Instituto de Geofisica, Unidad Michoacan, Universidad Nacional Autonoma de Mexico, Morelia, Michoacan CP 58190, Mexico 
593 |a IAFE, University of Buenos Aires, Buenos Aires, Argentina 
593 |a CCS, University of Campinas, Campinas, Brazil 
690 1 0 |a CHROMOSPHERE, MODELS 
690 1 0 |a HEATING, CHROMOSPHERIC 
690 1 0 |a HEATING, IN FLARES 
690 1 0 |a RADIO BURSTS, MICROWAVE 
690 1 0 |a X-RAY BURST, SPECTRUM 
690 1 0 |a X-RAY BURSTS, ASSOCIATION WITH FLARES 
700 1 |a Raulin, J.-P. 
700 1 |a Mackinnon, A. 
700 1 |a Giménez de Castro, G. 
700 1 |a Simões, P.J.A. 
700 1 |a Cabezas, D. 
700 1 |a de La Luz, V. 
700 1 |a Luoni, M. 
700 1 |a Kaufmann, P. 
773 0 |d Springer Netherlands, 2015  |g v. 290  |h pp. 2809-2826  |k n. 10  |p Sol. Phys.  |x 00380938  |w (AR-BaUEN)CENRE-2238  |t Solar Physics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84947495707&doi=10.1007%2fs11207-015-0782-0&partnerID=40&md5=bce47d67e73fc86e8fb1c4a2ea852350  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11207-015-0782-0  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00380938_v290_n10_p2809_Trottet  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00380938_v290_n10_p2809_Trottet  |y Registro en la Biblioteca Digital 
961 |a paper_00380938_v290_n10_p2809_Trottet  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 85588