Passive microwave and optical index approaches for estimating surface conductance and evapotranspiration in forest ecosystems

In this study, we evaluated and compared optical and passive microwave index based retrievals of surface conductance (Gs) and evapotranspiration (ET) following the Penman-Monteith (PM) approach. The methodology was evaluated over the growing season at five FLUXNET sites in the USA and Australia enco...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Barraza, V.
Otros Autores: Restrepo-Coupe, N., Huete, A., Grings, Francisco Matías, Van Gorsel, E.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2015
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 17336caa a22012617a 4500
001 PAPER-24615
003 AR-BaUEN
005 20250428091209.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84936759508 
030 |a AFMEE 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Barraza, V. 
245 1 0 |a Passive microwave and optical index approaches for estimating surface conductance and evapotranspiration in forest ecosystems 
260 |b Elsevier B.V.  |c 2015 
270 1 0 |m Barraza, V.; Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), Pabellon IAFE, CABAArgentina; email: vbarraza@iafe.uba.ar 
504 |a Allen, R.G., Pereira, L.S., Raes, D., Smith, M., (1998) Crop Evapotranspiration-guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56, , FAO, Rome, 300, 6541 
504 |a Andela, N., Liu, Y.Y., van Dijk, A.I.J.M., de Jeu, R.A.M., McVicar, T.R., Global changes in dryland vegetation dynamics (1988-2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data (2008) Biogeosciences, 10, pp. 6657-6676 
504 |a Barraza, V., Grings, F., Ferrazzoli, P., Huete, A., Restrepo-Coupe, N., Beringer, J., Van Gorsel, E., Karszenbaum, H., Behavior of multitemporal and multisensor passive microwave indices in Southern Hemisphere ecosystems (2014) J. Geophys. Res. Biogeosci., 119, p. JG002626 
504 |a Barraza, V., Grings, F., Ferrazzoli, P., Salvia, M., Maas, M., Rahmoune, R., Vittucci, C., Karszenbaum, H., Monitoring vegetation moisture using passive microwave and optical indices in the dry chaco forest, Argentina (2014) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, pp. 421-430 
504 |a Bowman, W.D., The relationship between leaf water status, gas exchange, and spectral reflectance in cotton leaves (1989) Remote Sens. Environ., 30, pp. 249-255 
504 |a Cleugh, H.A., Leuning, R., Mu, Q., Running, S.W., Regional evaporation estimates from flux tower and MODIS satellite data (2007) Remote Sens. Environ., 106, pp. 285-304 
504 |a Cook, B., Using light-use and production efficiency models to predict photosynthesis and net carbon exchange during forest canopy disturbance (2008) Ecosystems, 11, pp. 26-44 
504 |a Demarty, J., Chevallier, F., Friend, A.D., Viovy, N., Piao, S., Ciais, P., Assimilation of global MODIS leaf area index retrievals within a terrestrial biosphere model (2007) Geophys. Res. Lett., 34, p. L15402 
504 |a Dodds, P., Meyer, W.S., Barton, A., A Review of Methods to Estimate Irrigated Reference Crop Evapotranspiration across Australia (2005), (Report No. 04/05); Ferrazzoli, P., Guerriero, L., Passive microwave remote sensing of forests: a model investigation (1996) IEEE Trans. Geosci. Remote Sens., 34, pp. 433-443 
504 |a Ferrazzoli, P., Paloscia, S., Pampaloni, P., Schiavon, G., Solimini, D., Coppo, P., Sensitivity of microwave measurements to vegetation biomass and soil moisture content: a case study (1992) IEEE Trans. Geosci. Remote Sens., 30, pp. 750-756 
504 |a Ferrazzoli, P., Guerriero, L., Paloscia, S., Pampaloni, P., Modeling X and Ka band emission from Leafy vegetation (1995) J. Electromagn. Waves Appl., 9, pp. 393-406 
504 |a Frolking, S., Milliman, T., Palace, M., Wisser, D., Lammers, R., Fahnestock, M., Tropical forest backscatter anomaly evident in SeaWinds scatterometer morning overpass data during 2005 drought in Amazonia (2005) Remote Sens. Environ., 115, pp. 897-907 
504 |a Glenn, E.P., Nagler, P.L., Huete, A.R., Vegetation index methods for estimating evapotranspiration by remote sensing (2010) Surv. Geophys., 31, pp. 531-555 
504 |a Glenn, E.P., Neale, C.M.U., Hunsaker, D.J., Nagler, P.L., Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems (2011) Hydrol. Process., 25, pp. 4050-4062 
504 |a Goldstein, G., Andrade, J.L., Meinzer, F.C., Holbrook, N.M., Cavelier, J., Jackson, P., Celis, A., Stem water storage and diurnal patterns of water use in tropical forest canopy trees (1998) Plant Cell Environ., 21, pp. 397-406 
504 |a Goldstein, G., Meinzer, F.C., Bucci, S.J., Scholz, F.G., Franco, A.C., Hoffmann, W.A., Water economy of Neotropical savanna trees: six paradigms revisited (2008) Tree Physiol., 28, pp. 395-404 
504 |a Goudriaan, J., A simple and fast numerical method for the computation of daily totals of crop photosynthesis (1986) Agric. For. Meteorol, 38, pp. 249-254 
504 |a Grant, L., Diffuse and specular characteristics of leaf reflectance (1987) Remote Sens. Environ., 22, pp. 309-322 
504 |a Guerschman, J.P., Van Dijk, A.I.J.M., Mattersdorf, G., Beringer, J., Hutley, L.B., Leuning, R., Pipunic, R.C., Sherman, B.S., Scaling of potential evapotranspiration with MODIS data reproduces flux observations and catchment water balance observations across Australia (2009) J. Hydrol., 369, pp. 107-119 
504 |a Hardisky, M.S., The influence of soil salinity, growth form and leaf moisture on the spectral radiance of Spartina alterniflora canopies (1983) Photogramm. Eng. Remote Sens., 48, pp. 77-84 
504 |a Hollinger, D.Y., Aber, J., Dail, B., Davidson, E.A., Goltz, S.M., Hughes, H., Leclerc, M.Y., Walsh, J., Spatial and temporal variability in forest-atmosphere CO2 exchange (2004) Glob. Change Biol., 10, pp. 1689-1706 
504 |a Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., Overview of the radiometric and biophysical performance of the MODIS vegetation indices (2002) Remote Sens. Environ, 83, pp. 195-213. , The Moderate Resolution Imaging Spectroradiometer (MODIS): a new generation of Land Surface Monitoring 
504 |a Jackson, T.J., Soil moisture estimation using special satellite microwave/imager satellite data over a grassland region (1997) Water Resour. Res., 33, pp. 1475-1484 
504 |a Jarvis, P.G., McNaughton, K.G., Stomatal control of transpiration: scaling up from leaf to region (1986) Advances in Ecological Research, pp. 1-49. , Academic Press, A. MacFadyen, E.D. Ford (Eds.) 
504 |a Jones, M.O., Kimball, J.S., Jones, L.A., McDonald, K.C., Satellite passive microwave detection of North America start of season (2012) Remote Sens. Environ., 123, pp. 324-333 
504 |a Jupp, D.L.B., Culvenor, D.S., Lovell, J.L., Newnham, G.J., Strahler, A.H., Woodcock, C.E., Estimating forest LAI profiles and structural parameters using a ground-based laser called Echidna (2009) Tree Physiol., 29, pp. 171-181 
504 |a Kalma, J.D., McVicar, T.R., McCabe, M.F., Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data (2008) Surv. Geophys., 29, pp. 421-469 
504 |a Kawanishi, T., Sezai, T., Ito, Y., Imaoka, K., Takeshima, T., Ishido, Y., Shibata, A., Spencer, R.W., The advanced microwave scanning radiometer for the earth observing system (AMSR-E), NASDA's contribution to the EOS for global energy and water cycle studies (2003) IEEE Trans. Geosci. Remote Sens., 41, pp. 184-194 
504 |a Kimball, J.S., McDonald, K.C., Zhao, M., Spring thaw and its effect on terrestrial vegetation productivity in the Western Arctic Observed from satellite microwave and optical remote sensing (2006) Earth Interact., 10, pp. 1-22 
504 |a Leuning, R., Cleugh, H.A., Zegelin, S.J., Hughes, D., Carbon and water fluxes over a temperate Eucalyptus forest and a tropical wet/dry savanna in Australia: measurements and comparison with MODIS remote sensing estimates (2005) Agric. For. Meteorol., 129, pp. 151-173 
504 |a Leuning, R., Zhang, Y.Q., Rajaud, A., Cleugh, H., Tu, K., A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation (2008) Water Resour. Res., 44, p. W10419 
504 |a Leuning, R., van Gorsel, E., Massman, W.J., Isaac, P.R., Reflections on the surface energy imbalance problem (2012) Agric. For. Meteorol., 156, pp. 65-74 
504 |a Li, R., Min, Q., Lin, B., Estimation of evapotranspiration in a mid-latitude forest using the microwave emissivity difference vegetation index (EDVI) (2009) Remote Sens. Environ., 113, pp. 2011-2018 
504 |a Matsumoto, K., Ohta, T., Tanaka, T., Dependence of stomatal conductance on leaf chlorophyll concentration and meteorological variables (2005) Agric. For. Meteorol, 132, pp. 44-57 
504 |a Meyer, W.S., Wayne, S., Standard reference evaporation calculation for inland (1999), south eastern Australia [electronic resource]/by Wayne S. Meyer, PANDORA electronic collection., Technical report (CSIRO. Land and Water: Online); no. 98/35. CSIRO Land and Water, [Canberra]; Meyers, T., Baldocchi, D., (2005) Current Micrometeorological Flux Methodologies with Applications in Agriculture, , Publ. Agencies Staff US Dep. Commer 
504 |a Min, Q., Lin, B., Remote sensing of evapotranspiration and carbon uptake at Harvard Forest (2006) Remote Sens. Environ., 100, pp. 379-387 
504 |a Moncrieff, J., Malhi, Y., Leuning, R., The propagation of errors in long-term measurements of land-atmosphere fluxes of carbon and water (1996) Glob. Change Biol., 2, pp. 231-240 
504 |a Monteith, J.L., Evaporation from land surfaces: progress in analysis and prediction since 1948 (1985) Advances in Evapotranspiration. Presented at the Proceedings of the ASAE Conference on Evapotranspiration, 985, pp. 4-12 
504 |a Moran, M.S., Jackson, R.D., Assessing the spatial distribution of evapotranspiration using remotely sensed inputs (1991) J. Environ. Qual., 20, p. 725 
504 |a Mu, Q., Zhao, M., Running, S.W., Improvements to a MODIS global terrestrial evapotranspiration algorithm (2011) Remote Sens. Environ., 115, pp. 1781-1800 
504 |a Mu, Q., Development of a global evapotranspiration algorithm based on MODIS and global meteorology data (2007) Remote Sens. Environ., 111, pp. 519-536 
504 |a Paloscia, S., Pampaloni, P., Microwave polarization index for monitoring vegetation growth (1988) IEEE Trans. Geosci. Remote Sens., 26, pp. 617-621 
504 |a Paloscia, S., Pampaloni, P., Microwave vegetation indexes for detecting biomass and water conditions of agricultural crops (1992) Remote Sens. Environ., 40, pp. 15-26 
504 |a Pfautsch, S., Bleby, T.M., Rennenberg, H., Adams, M.A., Sap flow measurements reveal influence of temperature and stand structure on water use of Eucalyptus regnans forests (2010) For. Ecol. Manage., 259, pp. 1190-1199 
504 |a Pipunic, R.C., Walker, J.P., Western, A.W., Trudinger, C.M., Assimilation of multiple data types for improved heat flux prediction: a one-dimensional field study (2013) Remote Sens. Environ., 136, pp. 315-329 
504 |a Restrepo-Coupe, N., da Rocha, H.R., Hutyra, L.R., da Araujo, A.C., Borma, L.S., Christoffersen, B., Cabral, O.M.R., Saleska, S.R., What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network (2013) Agric. For. Meteorol., pp. 128-144 
504 |a Richardson, A.D., Hollinger, D.Y., Burba, G.G., Davis, K.J., Flanagan, L.B., Katul, G.G., William Munger, J., Wofsy, S.C., A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes (2006) Agric. For. Meteorol., 136, pp. 1-18 
504 |a Schmid, H.P., Grimmond, C.S.B., Cropley, F., Offerle, B., Su, H.-B., Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States (2000) Agric. For. Meteorol, 103, pp. 357-374 
504 |a Strahler, A.H., Jupp, D.L., Woodcock, C.E., Schaaf, C.B., Yao, T., Zhao, F., Yang, X., Boykin-Morris, W., Retrieval of forest structural parameters using a ground-based lidar instrument (Echidna®) (2008) Can. J. Remote Sens., 34, pp. S426-S440 
504 |a Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E., Budney, J., McKain, K., Munger, J.W., Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest (2007) J. Geophys. Res. Biogeosci., 112, p. G02020 
504 |a Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Verma, S., Energy balance closure at FLUXNET sites (2002) Agric. For. Meteorol. FLUXNET 2000 Synth., 113, pp. 223-243 
504 |a Yebra, M., Van Dijk, A., Leuning, R., Huete, A., Guerschman, J.P., Evaluation of optical remote sensing to estimate actual evapotranspiration and canopy conductance (2013) Remote Sens. Environ., 129, pp. 250-261 
504 |a Zhang, Y.-J., Meinzer, F.C., Qi, J.-H., Goldstein, G., Cao, K.-F., Midday stomatal conductance is more related to stem rather than leaf water status in subtropical deciduous and evergreen broadleaf trees (2013) Plant Cell Environ., 36, pp. 149-158 
506 |2 openaire  |e Política editorial 
520 3 |a In this study, we evaluated and compared optical and passive microwave index based retrievals of surface conductance (Gs) and evapotranspiration (ET) following the Penman-Monteith (PM) approach. The methodology was evaluated over the growing season at five FLUXNET sites in the USA and Australia encompassing three forest types, deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF) and evergreen broadleaf forest (EBF). A subset of Gs values were regressed against individual and combined indices of NDWI, EVI, and FI (microwave frequency index), and used to parameterize the PM equation for retrievals of ET (PM-Gs). For this purpose, we used MODIS (MYD09A1) and AMSR-E passive microwave data to compute the VIs. Model performance was quantitatively evaluated through comparative analysis of the regression coefficients (r2), and root mean square errors (RMSE). All indices correlated well with Gs over deciduous broadleaf forests, explaining 40-60% of Gs variations, however, the optical-based models had lower RMSE than the microwave FI model. In contrast, the FI model yielded the best performance to estimate Gs in evergreen forests (EBF and ENF). Overall, a combined microwave-optical model resulted in the best Gs estimates in these evergreen forests compared with the individual model approaches. In general, the PM-models explained more than 70% of the variance in LE with RMSE lower than 20W/m2. Based on these results, we developed a new approach combining optical and passive microwave indices based on their spatial vs. temporal synergies to generate Gs time series. This combined optical-microwave approach produced the best ET estimates for evergreen forest and offered a robust approach for deciduous forest without sacrificing precision. © 2015 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: University of Sydney, ARC-DP140102698 
536 |a Detalles de la financiación: Part of this study was conducted through a visiting scholar appointment awarded to the author by the University of Technology, Sydney through funds from ARC-DP140102698 (Huete, CI) . This work was also funded by MinCyT-CONAE-CONICET project 12. The author thanks Fluxnet and Ozflux Network for making the data freely available as well as the flux tower principal investigators. Appendix A 
593 |a Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), Pabellon IAFE, CABA, Buenos Aires, Argentina 
593 |a Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney (UTS), Broadway, NSW 2007, Australia 
593 |a CSIRO Oceans and Atmosphere Flagship, Canberra, ACT, Australia 
651 4 |a AUSTRALIA 
690 1 0 |a EVAPOTRANSPIRATION 
690 1 0 |a MICROWAVE INDEX 
690 1 0 |a OPTICAL INDICES 
690 1 0 |a SURFACE CONDUCTANCE 
690 1 0 |a AMSR-E 
690 1 0 |a COMPARATIVE STUDY 
690 1 0 |a ESTIMATION METHOD 
690 1 0 |a EVAPOTRANSPIRATION 
690 1 0 |a FOREST ECOSYSTEM 
690 1 0 |a HYDRAULIC CONDUCTIVITY 
690 1 0 |a INDEX METHOD 
690 1 0 |a MICROWAVE RADIATION 
690 1 0 |a MODEL TEST 
690 1 0 |a MODIS 
690 1 0 |a PARAMETERIZATION 
690 1 0 |a PENMAN-MONTEITH EQUATION 
690 1 0 |a PERFORMANCE ASSESSMENT 
690 1 0 |a VEGETATION TYPE 
690 1 0 |a UNITED STATES 
700 1 |a Restrepo-Coupe, N. 
700 1 |a Huete, A. 
700 1 |a Grings, Francisco Matías 
700 1 |a Van Gorsel, E. 
773 0 |d Elsevier B.V., 2015  |g v. 213  |h pp. 126-137  |p Agric. For. Meterol.  |x 01681923  |w (AR-BaUEN)CENRE-70  |t Agricultural and Forest Meteorology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84936759508&doi=10.1016%2fj.agrformet.2015.06.020&partnerID=40&md5=e1b87d3d85b22ea7ec7a5999a7719b37  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.agrformet.2015.06.020  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01681923_v213_n_p126_Barraza  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01681923_v213_n_p126_Barraza  |y Registro en la Biblioteca Digital 
961 |a paper_01681923_v213_n_p126_Barraza  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85568