CONAE Microwave Radiometer (MWR) Counts to Tb Algorithm and On-Orbit Validation
The Aquarius/SAC-D, International Earth Science Satellite Mission, is a collaboration between NASA and the Argentine Space Agency (Comisión Nacional de Actividades Espaciales, CONAE) that was launched on June 10, 2011 to provide scientists with monthly global maps of sea surface salinity (SSS) to un...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Institute of Electrical and Electronics Engineers
2015
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 08132caa a22009377a 4500 | ||
|---|---|---|---|
| 001 | PAPER-24601 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518205629.0 | ||
| 008 | 190411s2015 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84939437470 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Ghazi, Z. | |
| 245 | 1 | 0 | |a CONAE Microwave Radiometer (MWR) Counts to Tb Algorithm and On-Orbit Validation |
| 260 | |b Institute of Electrical and Electronics Engineers |c 2015 | ||
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Le Vine, D.M., Lagerloef, G.S.E., Torrusio, S.E., Aquarius and remote sensing of sea surface salinity from space (2010) Proc IEEE, 98 (5), pp. 688-703. , May | ||
| 504 | |a Le Vine, D.M., Lagerloef, G.S.E., Colomb, F.R., Yueh, S.H., Pellerano, F.A., Aquarius: An instrument to monitor sea surface salinity from space (2007) IEEE Trans. Geosc. Remote Sens, 45 (7), pp. 2040-2050. , Jul | ||
| 504 | |a Jacob, M.M., (2010) MWR Users Guide-English Version, , CONAE, Córdoba, Argentina, Tech. Rep. GS-OIV-OPS-GU-00500-A | ||
| 504 | |a Biswas, S., (2011) Brightness Temperature Calibration of Aquarius/SAC-D Microwave Radiometer (MWR), , Ph.D. dissertation Dept. Elect. Eng., Univ. Central Florida, Orlando, FL, USA | ||
| 504 | |a Ulaby, F.T., Moore, R.K., Fung, A.K., (1981) Microwave Remote Sensing: Active and Passive, 1. , Reading, MA, USA Addison-Wesley | ||
| 504 | |a Farrar, S., An empirical correction for the MWR brightness temperature smear effect (2012) Proc IEEE Int. Geosci. Remote Sens. Symp, pp. 4680-4683 | ||
| 504 | |a Biswas, S.K., Farrar, S., Gopalan, K., Santos-Garcia, A., Jones, W.L., Bilanow, S., Intercalibration of microwave radiometer brightness temperatures for the global precipitation measurement mission (2013) IEEE Trans. Geosci. Remote Sens, 51 (3), pp. 1465-1477. , Mar | ||
| 504 | |a Gaiser, P.W., The WindSat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance (2004) IEEE Trans. Geosci. Remote Sens, 42 (11), pp. 2347-2361. , Nov | ||
| 504 | |a Khan, S.S., (2009) Simulation of Brightness Temperatures for the Microwave Radiometer on the Aquarius/SAC-D Mission, , M.S.Thesis, Univ. Central Florida, Orlando, FL, USA | ||
| 504 | |a Ghazi, Z., Biswas, S., Jones, L., Hejazin, Y., Jacob, M.M., On-orbit signal processing procedure for determining microwave radiometer nonlinearity (2013) Proc IEEE Southeastcon, pp. 1-5 | ||
| 504 | |a Jones, W.L., Park, J.D., Soisuvarn, S., Liang, H., Gaiser, P.W., St Germain, K.M., Deep-space calibration of the WindSat radiometer (2006) IEEE Trans. Geosci. Remote Sens, 44 (3), pp. 476-495. , Mar | ||
| 504 | |a Ghazi, Z., Santos-Garcia, A., Jacob, M.M., Jones, L., CONAE microwave radiometer (MWR) counts to Tb algorithm and on-orbit validation (2014) Proc. 13th Spec. Meeting Microw. Radiometry Remote Sens. Environ, pp. 207-210 | ||
| 504 | |a Ghazi, Z., (2014) CONAE Microwave Radiometer (MWR) Counts to Brightness Temperature Algorithm, , Ph.D. dissertation Dept. Elect. Eng., Univ. Central Florida, Orlando, FL, USA | ||
| 504 | |a (2000) NCEP FNL Operational Model Global Tropospheric Analyses, Continuing from July 1999, , http://rda.ucar.edu/datasets/ds083.2/, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, CO, USA National Centers for Environmental Prediction/National Weather Service/NOAA/ U.S. Department of Commerce, accessed on Dec. 10 2014 | ||
| 504 | |a Chen, R., Santos-Garcia, A., Farrar, S., Jones, L., Assessment of the long-Term radiometric calibration stability of the TRMM microwave imager and the WindSat satellite radiometers (2014) Proc. 13th Spec. Meeting Microw. Radiometry Remote Sens Environ, pp. 187-191 | ||
| 504 | |a Santos-Garcia, A., Biswas, S., Jones, L., Aquarius/SAC-D microwave radiometer brightness temperature validation (2012) Proc. Oceans, pp. 1-4 | ||
| 504 | |a Wentz, F., (2012) Private Communication, , May | ||
| 504 | |a Bruscantini, C., Maas, M., Grings, F., Karszenbaum, H., Land intercalibration and drift monitoring of MWR radiometer on board SACD/Aquarius (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens, pp. 1-6. , 26 Jun | ||
| 520 | 3 | |a The Aquarius/SAC-D, International Earth Science Satellite Mission, is a collaboration between NASA and the Argentine Space Agency (Comisión Nacional de Actividades Espaciales, CONAE) that was launched on June 10, 2011 to provide scientists with monthly global maps of sea surface salinity (SSS) to understand the Earth's hydrological cycle and to investigate global climate change. This paper concerns the microwave radiometer (MWR), a CONAE science instrument developed to provide simultaneous and spatially collocated environmental measurements that complement the prime L-band radiometer/scatterometer sensor (Aquarius) for measuring SSS. MWR is a 3-channel (23.8-GHz H-pol and 36.5-GHz V-and H-pol) passive microwave instrument that measures the Earth's brightness temperature (Tb). This paper describes the MWR counts to Tb algorithm (V6.0) and presents results of the on-orbit Tb validation using intersatellite radiometric calibration with the Naval Research Laboratory's WindSat (WS) satellite radiometer. In addition, an alternative MWR counts to Tb algorithm (V7.0) is presented that normalizes the MWR Tbs to WS. This latter version (V7.0) has the advantage of removing MWR time-varying radiometric calibration biases between antenna beams and channels as verified by on-orbit comparisons with WS. © 2008-2012 IEEE. |l eng | |
| 593 | |a Central FL Remote Sensing Lab, University of Central Florida, Orlando, FL 32816, United States | ||
| 593 | |a CONAE, Centro Espacial Teófilo Tabanera, Falda del Cañete, CP 5187, Argentina | ||
| 593 | |a Quantitative Remote Sensing Group, Institute of Astronomy and Space Physics (IAFE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1428, Argentina | ||
| 593 | |a University of Buenos Aires, Buenos Aires, 1428, Argentina | ||
| 690 | 1 | 0 | |a AQUARIUS/SAC-D |
| 690 | 1 | 0 | |a DICKE MICROWAVE RADIOMETER (MWR) |
| 690 | 1 | 0 | |a NONLINEARITY |
| 690 | 1 | 0 | |a ALGORITHMS |
| 690 | 1 | 0 | |a CALIBRATION |
| 690 | 1 | 0 | |a CLIMATE CHANGE |
| 690 | 1 | 0 | |a EARTH (PLANET) |
| 690 | 1 | 0 | |a MICROWAVE DEVICES |
| 690 | 1 | 0 | |a MICROWAVE MEASUREMENT |
| 690 | 1 | 0 | |a MICROWAVE SENSORS |
| 690 | 1 | 0 | |a NASA |
| 690 | 1 | 0 | |a RADIOMETERS |
| 690 | 1 | 0 | |a RADIOMETRY |
| 690 | 1 | 0 | |a RESEARCH LABORATORIES |
| 690 | 1 | 0 | |a SURFACE WATERS |
| 690 | 1 | 0 | |a BRIGHTNESS TEMPERATURES |
| 690 | 1 | 0 | |a ENVIRONMENTAL MEASUREMENTS |
| 690 | 1 | 0 | |a GLOBAL CLIMATE CHANGES |
| 690 | 1 | 0 | |a MICROWAVE RADIOMETERS |
| 690 | 1 | 0 | |a NAVAL RESEARCH LABORATORY |
| 690 | 1 | 0 | |a RADIOMETRIC CALIBRATIONS |
| 690 | 1 | 0 | |a SATELLITE RADIOMETER |
| 690 | 1 | 0 | |a SEA SURFACE SALINITY |
| 690 | 1 | 0 | |a ORBITS |
| 690 | 1 | 0 | |a ALGORITHM |
| 690 | 1 | 0 | |a BRIGHTNESS TEMPERATURE |
| 690 | 1 | 0 | |a MICROWAVE IMAGERY |
| 690 | 1 | 0 | |a MODEL VALIDATION |
| 690 | 1 | 0 | |a NONLINEARITY |
| 690 | 1 | 0 | |a SATELLITE DATA |
| 690 | 1 | 0 | |a SATELLITE IMAGERY |
| 700 | 1 | |a Jones, W.L. | |
| 700 | 1 | |a Jacob, M.M. | |
| 700 | 1 | |a Santos-Garcia, A. | |
| 700 | 1 | |a Bruscantini, C.A. | |
| 773 | 0 | |d Institute of Electrical and Electronics Engineers, 2015 |g v. 8 |h pp. 5450-5461 |k n. 12 |p IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. |x 19391404 |t IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84939437470&doi=10.1109%2fJSTARS.2015.2460673&partnerID=40&md5=f6d1dadc80a9dda83a5f344f4daec8c1 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1109/JSTARS.2015.2460673 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_19391404_v8_n12_p5450_Ghazi |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19391404_v8_n12_p5450_Ghazi |y Registro en la Biblioteca Digital |
| 961 | |a paper_19391404_v8_n12_p5450_Ghazi |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 85554 | ||