Ionic Conductance of Polyelectrolyte-Modified Nanochannels: Nanoconfinement Effects on the Coupled Protonation Equilibria of Polyprotic Brushes
A theoretical methodology is introduced to calculate the low-bias conductance, structure, and composition of long polyelectrolyte-modified nanochannels of arbitrary geometry. This methodology is applied to explore the coupling between acid-base equilibrium and geometry in cylindrical, conical, and t...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
American Chemical Society
2016
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 14942caa a22011657a 4500 | ||
|---|---|---|---|
| 001 | PAPER-24503 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518205622.0 | ||
| 008 | 190411s2016 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84961163335 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Gilles, F.M. | |
| 245 | 1 | 0 | |a Ionic Conductance of Polyelectrolyte-Modified Nanochannels: Nanoconfinement Effects on the Coupled Protonation Equilibria of Polyprotic Brushes |
| 260 | |b American Chemical Society |c 2016 | ||
| 270 | 1 | 0 | |m Tagliazucchi, M.; INQUIMAE-CONICET, Ciudad Universitaria, Pabellón 2, Argentina; email: mario@qi.fcen.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Wen, L., Hou, X., Tian, Y., Zhai, J., Jiang, L., Bio-Inspired Photoelectric Conversion Based on Smart-Gating Nanochannels (2010) Adv. Funct. Mater., 20 (16), pp. 2636-2642 | ||
| 504 | |a Dekker, C., Solid-State Nanopores (2007) Nat. Nanotechnol., 2, pp. 209-215 | ||
| 504 | |a Kowalczyk, S.W., Blosser, T.R., Dekker, C., Biomimetic Nanopores: Learning from and about Nature (2011) Trends Biotechnol., 29 (12), pp. 607-614 | ||
| 504 | |a Howorka, S., Siwy, Z.S., Nanopores as Protein Sensors (2012) Nat. Biotechnol., 30 (6), pp. 506-507 | ||
| 504 | |a Martin, C.R., Siwy, Z.S., Chemistry. Learning Nature's Way: Biosensing with Synthetic Nanopores (2007) Science, 317 (5836), pp. 331-332 | ||
| 504 | |a Hoogerheide, D.P., Garaj, S., Golovchenko, J.A., Probing Surface Charge Fluctuations with Solid-State Nanopores (2009) Phys. Rev. Lett., 102 (25), p. 256804 | ||
| 504 | |a Schoch, R., Han, J., Renaud, P., Transport Phenomena in Nanofluidics (2008) Rev. Mod. Phys., 80 (3), pp. 839-883 | ||
| 504 | |a Guo, W., Xia, H., Xia, F., Hou, X., Cao, L., Wang, L., Xue, J., Zhu, D., Current Rectification in Temperature-Responsive Single Nanopores (2010) ChemPhysChem, 11 (4), pp. 859-864 | ||
| 504 | |a Gillespie, D., Eisenberg, R., Modified Donnan Potentials for Ion Transport through Biological Ion Channels (2001) Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 63 (6), p. 061902 | ||
| 504 | |a Guo, W., Tian, Y., Jiang, L., Asymmetric Ion Transport through Ion-Channel-Mimetic Solid-State Nanopores (2013) Acc. Chem. Res., 46 (12), pp. 2834-2846 | ||
| 504 | |a Siwy, Z.S., Apel, P., Baur, D., Dobrev, D., Preparation of Synthetic Nanopores with Transport Properties Analogous to Biological Channels (2003) Surf. Sci., 532-535, pp. 1061-1066 | ||
| 504 | |a Ram, P., Apel, P.Y., Cervera, J., Maf, S., Ramírez, P., Mafé, S., Apel, P.Y., Mafé, S., Pore Structure and Function of Synthetic Nanopores with Fixed Charges: Tip Shape and Rectification Properties (2008) Nanotechnology, 19 (31), p. 315707 | ||
| 504 | |a Siwy, Z.S., Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry (2006) Adv. Funct. Mater., 16 (6), pp. 735-746 | ||
| 504 | |a Stein, D., Kruithof, M., Dekker, C., Surface-Charge-Governed Ion Transport in Nanofluidic Channels (2004) Phys. Rev. Lett., 93 (3), p. 035901 | ||
| 504 | |a Ali, M., Schiedt, B., Healy, K., Neumann, R., Ensinger, W., Modifying the Surface Charge of Single Track-Etched Conical Nanopores in Polyimide (2008) Nanotechnology, 19 (8), p. 085713 | ||
| 504 | |a Siwy, Z.S., Heins, E., Harrell, C.C., Kohli, P., Martin, C.R., Conical-Nanotube Ion-Current Rectifiers: The Role of Surface Charge (2004) J. Am. Chem. Soc., 126 (35), pp. 10850-10851 | ||
| 504 | |a Van Der Heyden, F.H.J., Bonthuis, D.J., Stein, D., Meyer, C., Dekker, C., Power Generation by Pressure-Driven Transport of Ions in Nanofluidic Channels (2007) Nano Lett, 7 (4), pp. 1022-1025 | ||
| 504 | |a Daiguji, H., Yang, P., Szeri, A.J., Majumdar, A., Electrochemomechanical Energy Conversion in Nanofluidic Channels (2004) Nano Lett, 4 (12), pp. 2315-2321 | ||
| 504 | |a Mafe, S., Manzanares, J.A., Ramirez, P., Gating of Nanopores: Modeling and Implementation of Logic Gates (2010) J. Phys. Chem. C, 114 (49), pp. 21287-21290 | ||
| 504 | |a Ali, M., Mafe, S., Ramirez, P., Neumann, R., Ensinger, W., Logic Gates Using Nanofluidic Diodes Based on Conical Nanopores Functionalized with Polyprotic Acid Chains (2009) Langmuir, 25 (20), pp. 11993-11997 | ||
| 504 | |a Daiguji, H., Oka, Y., Shirono, K., Nanofluidic Diode and Bipolar Transistor (2005) Nano Lett, 5 (11), pp. 2274-2280 | ||
| 504 | |a Venkatesan, B.M.B., Bashir, R., Nanopore Sensors for Nucleic Acid Analysis (2011) Nat. Nanotechnol., 6 (10), pp. 615-624 | ||
| 504 | |a Siwy, Z.S., Trofin, L., Kohli, P., Baker, L.A., Trautmann, C., Martin, C.R., Protein Biosensors Based on Biofunctionalized Conical Gold Nanotubes (2005) J. Am. Chem. Soc., 127 (14), pp. 5000-5001 | ||
| 504 | |a Ali, M., Neumann, R., Ensinger, W., (2010) ACS Nano, 4 (12), pp. 7267-7274 | ||
| 504 | |a Ali, M., Nasir, S., Ramirez, P., Cervera, J., Mafe, S., Ensinger, W., Carbohydrate-Mediated Biomolecular Recognition and Gating of Synthetic Ion Channels (2013) J. Phys. Chem. C, 117 (35), pp. 18234-18242 | ||
| 504 | |a Ali, M., Yameen, B., Neumann, R., Ensinger, W., Knoll, W., Azzaroni, O., Biosensing and Supramolecular Bioconjugation in Single Conical Polymer Nanochannels. Facile Incorporation of Biorecognition Elements into Nanoconfined Geometries (2008) J. Am. Chem. Soc., 130 (48), pp. 16351-16357 | ||
| 504 | |a Ali, M., Ramirez, P., Tahir, M.N., Mafe, S., Siwy, Z., Neumann, R., Tremel, W., Ensinger, W., Biomolecular Conjugation inside Synthetic Polymer Nanopores via Glycoprotein-Lectin Interactions (2011) Nanoscale, 3 (4), pp. 1894-1903 | ||
| 504 | |a Tagliazucchi, M., Azzaroni, O., Szleifer, I., Responsive Polymers End-Tethered in Solid-State Nanochannels: When Nanoconfinement Really Matters (2010) J. Am. Chem. Soc., 132 (35), pp. 12404-12411 | ||
| 504 | |a Brunsen, A., Díaz, C., Pietrasanta, L.I., Yameen, B., Ceolín, M., Soler-Illia, G.J.A.A., Azzaroni, O., Proton and Calcium-Gated Ionic Mesochannels: Phosphate-Bearing Polymer Brushes Hosted in Mesoporous Thin Films as Biomimetic Interfacial Architectures (2012) Langmuir, 28 (7), pp. 3583-3592 | ||
| 504 | |a Wang, D., Nap, R.J., Lagzi, I., Kowalczyk, B., Han, S., Grzybowski, B.A., Szleifer, I., How and Why Nanoparticle's Curvature Regulates the Apparent pKa of the Coating Ligands (2011) J. Am. Chem. Soc., 133 (7), pp. 2192-2197 | ||
| 504 | |a Nap, R., Gong, P., Szleifer, I., Weak Polyelectrolytes Tethered to Surfaces: Effect of Geometry, Acid-base Equilibrium and Electrical Permittivity (2006) J. Polym. Sci., Part B: Polym. Phys., 44, pp. 2638-2662 | ||
| 504 | |a Dong, R., Lindau, M., Ober, C.K., Dissociation Behavior of Weak Polyelectrolyte Brushes on a Planar Surface (2009) Langmuir, 25 (8), pp. 4774-4779 | ||
| 504 | |a Szleifer, I., Carignano, M.A., Lafayette, W., (1996) Tethered Polymer Layers, 90. , Wiley: New York | ||
| 504 | |a Nap, R.J., Tagliazucchi, M., Szleifer, I., Born Energy, Acid-Base Equilibrium, Structure and Interactions of End-Grafted Weak Polyelectrolyte Layers (2014) J. Chem. Phys., 140 (2), p. 024910 | ||
| 504 | |a Tagliazucchi, M., De La Cruz, M.O., Szleifer, I., Self-Organization of Grafted Polyelectrolyte Layers via the Coupling of Chemical Equilibrium and Physical Interactions (2010) Proc. Natl. Acad. Sci. U. S. A., 107 (12), pp. 5300-5305 | ||
| 504 | |a Skoog, D.A., West, D.M.W., Holler, F.J., Crouch, S.R.C., (1995) Fundamentals of Analytical Chemistry, , 7 th ed. Saunders College Pub. Philadelphia, PA | ||
| 504 | |a Tagliazucchi, M., Rabin, Y., Szleifer, I., Ion Transport and Molecular Organization Are Coupled in Polyelectrolyte-Modified Nanopores (2011) J. Am. Chem. Soc., 133 (44), pp. 17753-17763 | ||
| 504 | |a Goldman, D., Potential, Impedance, and Rectification in Membranes (1943) J. Gen. Physiol., 27, p. 1 | ||
| 504 | |a Yameen, B., Ali, M., Neumann, R., Ensinger, W., Knoll, W., Azzaroni, O., Proton-Regulated Rectified Ionic Transport through Solid-State Conical Nanopores Modified with Phosphate-Bearing Polymer Brushes (2010) Chem. Commun. (Cambridge, U. K.), 46 (11), pp. 1908-1910 | ||
| 504 | |a Tagliazucchi, M., Rabin, Y., Szleifer, I., Transport Rectification in Nanopores with Outer Membranes Modified with Surface Charges and Polyelectrolytes (2013) ACS Nano, 7 (10), pp. 9085-9097 | ||
| 504 | |a Tagliazucchi, M., Szleifer, I., Stimuli-Responsive Polymers Grafted to Nanopores and Other Nano-Curved Surfaces: Structure, Chemical Equilibrium and Transport (2012) Soft Matter, 8 (28), p. 7292 | ||
| 504 | |a Ohshima, H., Ohki, S., Donnan Potential and Surface Potential of a Charged Membrane (1985) Biophys. J., 47 (5), pp. 673-678 | ||
| 504 | |a Wang, T.-Y., Sheng, Y.-J., Tsao, H.-K., Donnan Potential of Dilute Colloidal Dispersions: Monte Carlo Simulations (2009) J. Colloid Interface Sci., 340 (2), pp. 192-201 | ||
| 504 | |a Higa, M., Tanioka, A., Kira, A., A Novel Measurement Method of Donnan Potential at an Interface between a Charged Membrane and Mixed Salt Solution (1998) J. Membr. Sci., 140 (2), pp. 213-220 | ||
| 504 | |a Yameen, B., Ali, M., Neumann, R., Ensinger, W., Knoll, W., Azzaroni, O., Ionic Transport through Single Solid-State Nanopores Controlled with Thermally Nanoactuated Macromolecular Gates (2009) Small, 5 (11), pp. 1287-1291 | ||
| 504 | |a Tagliazucchi, M., Rabin, Y., Szleifer, I., Ion Transport and Molecular Organization Are Coupled in Polyelectrolyte-Modified Nanopores (2011) J. Am. Chem. Soc., 133 (44), pp. 17753-17763 | ||
| 520 | 3 | |a A theoretical methodology is introduced to calculate the low-bias conductance, structure, and composition of long polyelectrolyte-modified nanochannels of arbitrary geometry. This methodology is applied to explore the coupling between acid-base equilibrium and geometry in cylindrical, conical, and trumpet-shaped nanochannels modified by end-grafted layers of poly(2-(methacryloyloxy)ethyl-phosphate) (PMEP), a diprotic polyacid. The ionic conductance and speciation curves (i.e., the fraction of deprotonated, monoprotonated, and diprotonated acid segments) for this system were predicted as a function of the solution pH. The apparent pKa's and widths of the transitions between the different acid-base states determined from the speciation curves depend on the diameter and shape of the nanochannel and the bulk salt concentration. In the limit of wide channels, the apparent pKa's and widths can be estimated by a simplified analytical model derived from the more general molecular theory. Both the general and the simplified theory predicts that, due to charge-regulation effects, the first acid-base transition (0/-1 transition) is wider than the second one (-1/-2), and both transitions are wider than the ideal one expected for an isolated acid-base group in the bulk. It is also shown that the inflection points of the conductance versus pH curves provide a very good estimation of the apparent pKa's of the polyelectrolyte for cylindrical channels, but the quality of the estimation decreases for noncylindrical geometries. © 2016 American Chemical Society. |l eng | |
| 536 | |a Detalles de la financiación: U.S. Department of Energy | ||
| 536 | |a Detalles de la financiación: 4947/11, 3911 | ||
| 536 | |a Detalles de la financiación: Austrian Institute of Technology | ||
| 536 | |a Detalles de la financiación: Office of Science | ||
| 536 | |a Detalles de la financiación: Chengdu University of Information Technology | ||
| 536 | |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 11220130100370CO | ||
| 536 | |a Detalles de la financiación: Office of the Provost, Central Michigan University | ||
| 536 | |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2010-2554, PICT-2013-0905 | ||
| 536 | |a Detalles de la financiación: Basic Energy Sciences, DE-SC0000989 | ||
| 536 | |a Detalles de la financiación: Northwestern University | ||
| 536 | |a Detalles de la financiación: F.M.G. acknowledges a doctoral scholarship from CONICET (Argentina). O.A. and M.T. are CONICET fellows. F.M.G. would like to thank R. Nap and G. Longo for stimulating discussions and G. Putzel for valuable comments and criticisms. This work was supported as part of the Center for Bio-Inspired Energy Science, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under award no. DE-SC0000989. This research was supported in part through the computational resources and staff contributions provided by the Quest high performance computing facility at Northwestern University, which is jointly supported by the Office of the Provost, the Office for Research, and Northwestern University Information Technology. O.A. acknowledges financial support from ANPCyT (PICT 2010-2554 and PICT-2013-0905), Consejo Nacional de Investigaciones Cient?ficas y Te?cnicas (CONICET) (PIP 11220130100370CO), Fundacio?n Petruzza, and the Austrian Institute of Technology GmbH (AIT-CONICET Partner Lab: "Exploratory Research for Advanced Technologies in Supramolecular Materials Science" - Exp. 4947/11, res. no. 3911). | ||
| 593 | |a Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, La Plata, 1900, Argentina | ||
| 593 | |a INQUIMAE-CONICET, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires, Buenos Aires C1428EHA, Argentina | ||
| 593 | |a Department of Biomedical Engineering, Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, United States | ||
| 690 | 1 | 0 | |a GEOMETRY |
| 690 | 1 | 0 | |a PROTONATION |
| 690 | 1 | 0 | |a ACID-BASE EQUILIBRIA |
| 690 | 1 | 0 | |a ARBITRARY GEOMETRY |
| 690 | 1 | 0 | |a CHARGE REGULATION |
| 690 | 1 | 0 | |a CYLINDRICAL CHANNEL |
| 690 | 1 | 0 | |a INFLECTION POINTS |
| 690 | 1 | 0 | |a NANOCONFINEMENT EFFECTS |
| 690 | 1 | 0 | |a PROTONATION EQUILIBRIA |
| 690 | 1 | 0 | |a SALT CONCENTRATION |
| 690 | 1 | 0 | |a POLYELECTROLYTES |
| 700 | 1 | |a Tagliazucchi, M. | |
| 700 | 1 | |a Azzaroni, O. | |
| 700 | 1 | |a Szleifer, I. | |
| 773 | 0 | |d American Chemical Society, 2016 |g v. 120 |h pp. 4789-4798 |k n. 9 |p J. Phys. Chem. C |x 19327447 |t Journal of Physical Chemistry C | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84961163335&doi=10.1021%2facs.jpcc.5b11788&partnerID=40&md5=3dd93dc5955066c8e7056fed831d7e8c |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1021/acs.jpcc.5b11788 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_19327447_v120_n9_p4789_Gilles |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v120_n9_p4789_Gilles |y Registro en la Biblioteca Digital |
| 961 | |a paper_19327447_v120_n9_p4789_Gilles |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 963 | |a VARI | ||
| 999 | |c 85456 | ||