Ionic Conductance of Polyelectrolyte-Modified Nanochannels: Nanoconfinement Effects on the Coupled Protonation Equilibria of Polyprotic Brushes

A theoretical methodology is introduced to calculate the low-bias conductance, structure, and composition of long polyelectrolyte-modified nanochannels of arbitrary geometry. This methodology is applied to explore the coupling between acid-base equilibrium and geometry in cylindrical, conical, and t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Gilles, F.M
Otros Autores: Tagliazucchi, M., Azzaroni, O., Szleifer, I.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14942caa a22011657a 4500
001 PAPER-24503
003 AR-BaUEN
005 20230518205622.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84961163335 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Gilles, F.M. 
245 1 0 |a Ionic Conductance of Polyelectrolyte-Modified Nanochannels: Nanoconfinement Effects on the Coupled Protonation Equilibria of Polyprotic Brushes 
260 |b American Chemical Society  |c 2016 
270 1 0 |m Tagliazucchi, M.; INQUIMAE-CONICET, Ciudad Universitaria, Pabellón 2, Argentina; email: mario@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Wen, L., Hou, X., Tian, Y., Zhai, J., Jiang, L., Bio-Inspired Photoelectric Conversion Based on Smart-Gating Nanochannels (2010) Adv. Funct. Mater., 20 (16), pp. 2636-2642 
504 |a Dekker, C., Solid-State Nanopores (2007) Nat. Nanotechnol., 2, pp. 209-215 
504 |a Kowalczyk, S.W., Blosser, T.R., Dekker, C., Biomimetic Nanopores: Learning from and about Nature (2011) Trends Biotechnol., 29 (12), pp. 607-614 
504 |a Howorka, S., Siwy, Z.S., Nanopores as Protein Sensors (2012) Nat. Biotechnol., 30 (6), pp. 506-507 
504 |a Martin, C.R., Siwy, Z.S., Chemistry. Learning Nature's Way: Biosensing with Synthetic Nanopores (2007) Science, 317 (5836), pp. 331-332 
504 |a Hoogerheide, D.P., Garaj, S., Golovchenko, J.A., Probing Surface Charge Fluctuations with Solid-State Nanopores (2009) Phys. Rev. Lett., 102 (25), p. 256804 
504 |a Schoch, R., Han, J., Renaud, P., Transport Phenomena in Nanofluidics (2008) Rev. Mod. Phys., 80 (3), pp. 839-883 
504 |a Guo, W., Xia, H., Xia, F., Hou, X., Cao, L., Wang, L., Xue, J., Zhu, D., Current Rectification in Temperature-Responsive Single Nanopores (2010) ChemPhysChem, 11 (4), pp. 859-864 
504 |a Gillespie, D., Eisenberg, R., Modified Donnan Potentials for Ion Transport through Biological Ion Channels (2001) Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 63 (6), p. 061902 
504 |a Guo, W., Tian, Y., Jiang, L., Asymmetric Ion Transport through Ion-Channel-Mimetic Solid-State Nanopores (2013) Acc. Chem. Res., 46 (12), pp. 2834-2846 
504 |a Siwy, Z.S., Apel, P., Baur, D., Dobrev, D., Preparation of Synthetic Nanopores with Transport Properties Analogous to Biological Channels (2003) Surf. Sci., 532-535, pp. 1061-1066 
504 |a Ram, P., Apel, P.Y., Cervera, J., Maf, S., Ramírez, P., Mafé, S., Apel, P.Y., Mafé, S., Pore Structure and Function of Synthetic Nanopores with Fixed Charges: Tip Shape and Rectification Properties (2008) Nanotechnology, 19 (31), p. 315707 
504 |a Siwy, Z.S., Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry (2006) Adv. Funct. Mater., 16 (6), pp. 735-746 
504 |a Stein, D., Kruithof, M., Dekker, C., Surface-Charge-Governed Ion Transport in Nanofluidic Channels (2004) Phys. Rev. Lett., 93 (3), p. 035901 
504 |a Ali, M., Schiedt, B., Healy, K., Neumann, R., Ensinger, W., Modifying the Surface Charge of Single Track-Etched Conical Nanopores in Polyimide (2008) Nanotechnology, 19 (8), p. 085713 
504 |a Siwy, Z.S., Heins, E., Harrell, C.C., Kohli, P., Martin, C.R., Conical-Nanotube Ion-Current Rectifiers: The Role of Surface Charge (2004) J. Am. Chem. Soc., 126 (35), pp. 10850-10851 
504 |a Van Der Heyden, F.H.J., Bonthuis, D.J., Stein, D., Meyer, C., Dekker, C., Power Generation by Pressure-Driven Transport of Ions in Nanofluidic Channels (2007) Nano Lett, 7 (4), pp. 1022-1025 
504 |a Daiguji, H., Yang, P., Szeri, A.J., Majumdar, A., Electrochemomechanical Energy Conversion in Nanofluidic Channels (2004) Nano Lett, 4 (12), pp. 2315-2321 
504 |a Mafe, S., Manzanares, J.A., Ramirez, P., Gating of Nanopores: Modeling and Implementation of Logic Gates (2010) J. Phys. Chem. C, 114 (49), pp. 21287-21290 
504 |a Ali, M., Mafe, S., Ramirez, P., Neumann, R., Ensinger, W., Logic Gates Using Nanofluidic Diodes Based on Conical Nanopores Functionalized with Polyprotic Acid Chains (2009) Langmuir, 25 (20), pp. 11993-11997 
504 |a Daiguji, H., Oka, Y., Shirono, K., Nanofluidic Diode and Bipolar Transistor (2005) Nano Lett, 5 (11), pp. 2274-2280 
504 |a Venkatesan, B.M.B., Bashir, R., Nanopore Sensors for Nucleic Acid Analysis (2011) Nat. Nanotechnol., 6 (10), pp. 615-624 
504 |a Siwy, Z.S., Trofin, L., Kohli, P., Baker, L.A., Trautmann, C., Martin, C.R., Protein Biosensors Based on Biofunctionalized Conical Gold Nanotubes (2005) J. Am. Chem. Soc., 127 (14), pp. 5000-5001 
504 |a Ali, M., Neumann, R., Ensinger, W., (2010) ACS Nano, 4 (12), pp. 7267-7274 
504 |a Ali, M., Nasir, S., Ramirez, P., Cervera, J., Mafe, S., Ensinger, W., Carbohydrate-Mediated Biomolecular Recognition and Gating of Synthetic Ion Channels (2013) J. Phys. Chem. C, 117 (35), pp. 18234-18242 
504 |a Ali, M., Yameen, B., Neumann, R., Ensinger, W., Knoll, W., Azzaroni, O., Biosensing and Supramolecular Bioconjugation in Single Conical Polymer Nanochannels. Facile Incorporation of Biorecognition Elements into Nanoconfined Geometries (2008) J. Am. Chem. Soc., 130 (48), pp. 16351-16357 
504 |a Ali, M., Ramirez, P., Tahir, M.N., Mafe, S., Siwy, Z., Neumann, R., Tremel, W., Ensinger, W., Biomolecular Conjugation inside Synthetic Polymer Nanopores via Glycoprotein-Lectin Interactions (2011) Nanoscale, 3 (4), pp. 1894-1903 
504 |a Tagliazucchi, M., Azzaroni, O., Szleifer, I., Responsive Polymers End-Tethered in Solid-State Nanochannels: When Nanoconfinement Really Matters (2010) J. Am. Chem. Soc., 132 (35), pp. 12404-12411 
504 |a Brunsen, A., Díaz, C., Pietrasanta, L.I., Yameen, B., Ceolín, M., Soler-Illia, G.J.A.A., Azzaroni, O., Proton and Calcium-Gated Ionic Mesochannels: Phosphate-Bearing Polymer Brushes Hosted in Mesoporous Thin Films as Biomimetic Interfacial Architectures (2012) Langmuir, 28 (7), pp. 3583-3592 
504 |a Wang, D., Nap, R.J., Lagzi, I., Kowalczyk, B., Han, S., Grzybowski, B.A., Szleifer, I., How and Why Nanoparticle's Curvature Regulates the Apparent pKa of the Coating Ligands (2011) J. Am. Chem. Soc., 133 (7), pp. 2192-2197 
504 |a Nap, R., Gong, P., Szleifer, I., Weak Polyelectrolytes Tethered to Surfaces: Effect of Geometry, Acid-base Equilibrium and Electrical Permittivity (2006) J. Polym. Sci., Part B: Polym. Phys., 44, pp. 2638-2662 
504 |a Dong, R., Lindau, M., Ober, C.K., Dissociation Behavior of Weak Polyelectrolyte Brushes on a Planar Surface (2009) Langmuir, 25 (8), pp. 4774-4779 
504 |a Szleifer, I., Carignano, M.A., Lafayette, W., (1996) Tethered Polymer Layers, 90. , Wiley: New York 
504 |a Nap, R.J., Tagliazucchi, M., Szleifer, I., Born Energy, Acid-Base Equilibrium, Structure and Interactions of End-Grafted Weak Polyelectrolyte Layers (2014) J. Chem. Phys., 140 (2), p. 024910 
504 |a Tagliazucchi, M., De La Cruz, M.O., Szleifer, I., Self-Organization of Grafted Polyelectrolyte Layers via the Coupling of Chemical Equilibrium and Physical Interactions (2010) Proc. Natl. Acad. Sci. U. S. A., 107 (12), pp. 5300-5305 
504 |a Skoog, D.A., West, D.M.W., Holler, F.J., Crouch, S.R.C., (1995) Fundamentals of Analytical Chemistry, , 7 th ed. Saunders College Pub. Philadelphia, PA 
504 |a Tagliazucchi, M., Rabin, Y., Szleifer, I., Ion Transport and Molecular Organization Are Coupled in Polyelectrolyte-Modified Nanopores (2011) J. Am. Chem. Soc., 133 (44), pp. 17753-17763 
504 |a Goldman, D., Potential, Impedance, and Rectification in Membranes (1943) J. Gen. Physiol., 27, p. 1 
504 |a Yameen, B., Ali, M., Neumann, R., Ensinger, W., Knoll, W., Azzaroni, O., Proton-Regulated Rectified Ionic Transport through Solid-State Conical Nanopores Modified with Phosphate-Bearing Polymer Brushes (2010) Chem. Commun. (Cambridge, U. K.), 46 (11), pp. 1908-1910 
504 |a Tagliazucchi, M., Rabin, Y., Szleifer, I., Transport Rectification in Nanopores with Outer Membranes Modified with Surface Charges and Polyelectrolytes (2013) ACS Nano, 7 (10), pp. 9085-9097 
504 |a Tagliazucchi, M., Szleifer, I., Stimuli-Responsive Polymers Grafted to Nanopores and Other Nano-Curved Surfaces: Structure, Chemical Equilibrium and Transport (2012) Soft Matter, 8 (28), p. 7292 
504 |a Ohshima, H., Ohki, S., Donnan Potential and Surface Potential of a Charged Membrane (1985) Biophys. J., 47 (5), pp. 673-678 
504 |a Wang, T.-Y., Sheng, Y.-J., Tsao, H.-K., Donnan Potential of Dilute Colloidal Dispersions: Monte Carlo Simulations (2009) J. Colloid Interface Sci., 340 (2), pp. 192-201 
504 |a Higa, M., Tanioka, A., Kira, A., A Novel Measurement Method of Donnan Potential at an Interface between a Charged Membrane and Mixed Salt Solution (1998) J. Membr. Sci., 140 (2), pp. 213-220 
504 |a Yameen, B., Ali, M., Neumann, R., Ensinger, W., Knoll, W., Azzaroni, O., Ionic Transport through Single Solid-State Nanopores Controlled with Thermally Nanoactuated Macromolecular Gates (2009) Small, 5 (11), pp. 1287-1291 
504 |a Tagliazucchi, M., Rabin, Y., Szleifer, I., Ion Transport and Molecular Organization Are Coupled in Polyelectrolyte-Modified Nanopores (2011) J. Am. Chem. Soc., 133 (44), pp. 17753-17763 
520 3 |a A theoretical methodology is introduced to calculate the low-bias conductance, structure, and composition of long polyelectrolyte-modified nanochannels of arbitrary geometry. This methodology is applied to explore the coupling between acid-base equilibrium and geometry in cylindrical, conical, and trumpet-shaped nanochannels modified by end-grafted layers of poly(2-(methacryloyloxy)ethyl-phosphate) (PMEP), a diprotic polyacid. The ionic conductance and speciation curves (i.e., the fraction of deprotonated, monoprotonated, and diprotonated acid segments) for this system were predicted as a function of the solution pH. The apparent pKa's and widths of the transitions between the different acid-base states determined from the speciation curves depend on the diameter and shape of the nanochannel and the bulk salt concentration. In the limit of wide channels, the apparent pKa's and widths can be estimated by a simplified analytical model derived from the more general molecular theory. Both the general and the simplified theory predicts that, due to charge-regulation effects, the first acid-base transition (0/-1 transition) is wider than the second one (-1/-2), and both transitions are wider than the ideal one expected for an isolated acid-base group in the bulk. It is also shown that the inflection points of the conductance versus pH curves provide a very good estimation of the apparent pKa's of the polyelectrolyte for cylindrical channels, but the quality of the estimation decreases for noncylindrical geometries. © 2016 American Chemical Society.  |l eng 
536 |a Detalles de la financiación: U.S. Department of Energy 
536 |a Detalles de la financiación: 4947/11, 3911 
536 |a Detalles de la financiación: Austrian Institute of Technology 
536 |a Detalles de la financiación: Office of Science 
536 |a Detalles de la financiación: Chengdu University of Information Technology 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 11220130100370CO 
536 |a Detalles de la financiación: Office of the Provost, Central Michigan University 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2010-2554, PICT-2013-0905 
536 |a Detalles de la financiación: Basic Energy Sciences, DE-SC0000989 
536 |a Detalles de la financiación: Northwestern University 
536 |a Detalles de la financiación: F.M.G. acknowledges a doctoral scholarship from CONICET (Argentina). O.A. and M.T. are CONICET fellows. F.M.G. would like to thank R. Nap and G. Longo for stimulating discussions and G. Putzel for valuable comments and criticisms. This work was supported as part of the Center for Bio-Inspired Energy Science, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under award no. DE-SC0000989. This research was supported in part through the computational resources and staff contributions provided by the Quest high performance computing facility at Northwestern University, which is jointly supported by the Office of the Provost, the Office for Research, and Northwestern University Information Technology. O.A. acknowledges financial support from ANPCyT (PICT 2010-2554 and PICT-2013-0905), Consejo Nacional de Investigaciones Cient?ficas y Te?cnicas (CONICET) (PIP 11220130100370CO), Fundacio?n Petruzza, and the Austrian Institute of Technology GmbH (AIT-CONICET Partner Lab: "Exploratory Research for Advanced Technologies in Supramolecular Materials Science" - Exp. 4947/11, res. no. 3911). 
593 |a Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, La Plata, 1900, Argentina 
593 |a INQUIMAE-CONICET, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires, Buenos Aires C1428EHA, Argentina 
593 |a Department of Biomedical Engineering, Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, United States 
690 1 0 |a GEOMETRY 
690 1 0 |a PROTONATION 
690 1 0 |a ACID-BASE EQUILIBRIA 
690 1 0 |a ARBITRARY GEOMETRY 
690 1 0 |a CHARGE REGULATION 
690 1 0 |a CYLINDRICAL CHANNEL 
690 1 0 |a INFLECTION POINTS 
690 1 0 |a NANOCONFINEMENT EFFECTS 
690 1 0 |a PROTONATION EQUILIBRIA 
690 1 0 |a SALT CONCENTRATION 
690 1 0 |a POLYELECTROLYTES 
700 1 |a Tagliazucchi, M. 
700 1 |a Azzaroni, O. 
700 1 |a Szleifer, I. 
773 0 |d American Chemical Society, 2016  |g v. 120  |h pp. 4789-4798  |k n. 9  |p J. Phys. Chem. C  |x 19327447  |t Journal of Physical Chemistry C 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84961163335&doi=10.1021%2facs.jpcc.5b11788&partnerID=40&md5=3dd93dc5955066c8e7056fed831d7e8c  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/acs.jpcc.5b11788  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19327447_v120_n9_p4789_Gilles  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v120_n9_p4789_Gilles  |y Registro en la Biblioteca Digital 
961 |a paper_19327447_v120_n9_p4789_Gilles  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 85456