The Fokker-Planck equation for bosons in 2D: Well-posedness and asymptotic behavior

We show that solutions of the 2D Fokker-Planck equation for bosons are defined globally in time and converge to equilibrium, and this convergence is shown to be exponential for radially symmetric solutions. The main observation is that a variant of the Hopf-Cole transformation relates the 2D equatio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cañizo, J.A
Otros Autores: Carrillo, J.A, Laurençot, P., Rosado, J.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10117caa a22010697a 4500
001 PAPER-24486
003 AR-BaUEN
005 20230518205621.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84940068507 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a NOAND 
100 1 |a Cañizo, J.A. 
245 1 4 |a The Fokker-Planck equation for bosons in 2D: Well-posedness and asymptotic behavior 
260 |b Elsevier Ltd  |c 2016 
270 1 0 |m Carrillo, J.A.; Department of Mathematics, Imperial College London, South Kensington CampusUnited Kingdom; email: carrillo@imperial.ac.uk 
506 |2 openaire  |e Política editorial 
504 |a Aftalion, A., Helffer, B., On mathematical models for Bose-Einstein condensates in optical lattices (2009) Rev. Math. Phys., 21 (2), pp. 229-278 
504 |a Allemand, T., Toscani, G., The grazing collision limit of Kac caricature of Bose-Einstein particles (2011) Asymptot. Anal., 72 (3-4), pp. 201-229 
504 |a Ben Abdallah, N., Gamba, I.M., Toscani, G., On the minimization problem of sub-linear convex functionals (2011) Kinet. Relat. Models, 4 (4), pp. 857-871 
504 |a Benedetto, D., Caglioti, E., Carrillo, J.A., Pulvirenti, M., A non-Maxwellian steady distribution for one-dimensional granular media (1998) J. Stat. Phys., 91 (5-6), pp. 979-990 
504 |a Cáceres, M.J., Carrillo, J.A., Dolbeault, J., Nonlinear stability in Lp for a confined system of charged particles (2002) SIAM J. Math. Anal., 34 (2), pp. 478-494 
504 |a Carrillo, J.A., Cordier, S., Toscani, G., Over-populated tails for conservative-in-the-mean inelastic Maxwell models (2009) Discrete Contin. Dyn. Syst., 24 (1), pp. 59-81 
504 |a Carrillo, J.A., Laurençot, Ph., Rosado, J., Fermi-Dirac-Fokker-Planck equation: Well-posedness & long-time asymptotics (2009) J. Differential Equations, 247 (8), pp. 2209-2234 
504 |a Carrillo, J.A., Rosado, J., Salvarani, F., 1D nonlinear Fokker-Planck equations for fermions and bosons (2008) Appl. Math. Lett., 21 (2), pp. 148-154 
504 |a Carrillo, J.A., Toscani, G., Exponential convergence toward equilibrium for homogeneous Fokker-Planck-type equations (1998) Math. Methods Appl. Sci., 21 (13), pp. 1269-1286 
504 |a Cordier, S., Pareschi, L., Toscani, G., On a kinetic model for a simple market economy (2005) J. Stat. Phys., 120 (1-2), pp. 253-277 
504 |a Desvillettes, L., Dolbeault, J., On long time asymptotics of the Vlasov-Poisson-Boltzmann equation (1991) Comm. Partial Differential Equations, 16 (2-3), pp. 451-489 
504 |a Desvillettes, L., Ricci, V., A rigorous derivation of a linear kinetic equation of Fokker-Planck type in the limit of grazing collisions (2001) J. Stat. Phys., 104 (5-6), pp. 1173-1189 
504 |a Erdös, L., Schlein, B., Yau, H.T., Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate (2010) Ann. of Math., 172, pp. 291-370 
504 |a Escobedo, M., Mischler, S., On a quantum Boltzmann equation for a gas of photons (2001) J. Math. Pures Appl., 80 (5), pp. 471-515 
504 |a Escobedo, M., Mischler, S., Velazquez, J., Asymptotic description of Dirac mass formation in kinetic equations for quantum particles (2004) J. Differential Equations, 202 (2), pp. 208-230 
504 |a Fokker, A.D., Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld (1914) Ann. Phys., 43, pp. 810-820 
504 |a Ford, G.W., Lewis, J.T., O'Connell, R.F., Quantum Langevin equation (1988) Phys. Rev. A, 37, pp. 4419-4428 
504 |a Frank, T.D., Classical Langevin equations for the free electron gas and blackbody radiation (2004) J. Phys. A, 37, pp. 3561-3567 
504 |a Frank, T., Nonlinear Fokker-Planck Equations: Fundamentals and Applications (2006) Springer Series in Synergetics, , Springer 
504 |a Gamba, I.M., Haack, J.R., A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit (2014) J. Comput. Phys., 270, pp. 40-57 
504 |a Gardiner, C.W., Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (2004) Springer Series in Synergetics, 13. , third ed. Springer-Verlag Berlin 
504 |a Gardiner, C.W., Collett, M.J., Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation (1985) Phys. Rev. A, 31, pp. 3761-3774 
504 |a Goudon, T., On Boltzmann equations and Fokker-Planck asymptotics: Influence of grazing collisions (1997) J. Stat. Phys., 89 (3-4), pp. 751-776 
504 |a Hu, B.L., Paz, J.P., Zhang, Y., Quantum Brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise (1992) Phys. Rev. D, 45, pp. 2843-2861 
504 |a Kaniadakis, G., Generalized Boltzmann equation describing the dynamics of bosons and fermions (1995) Phys. Lett. A, 203, pp. 229-234 
504 |a Kaniadakis, G., Quarati, P., Kinetic equation for classical particles obeying an exclusion principle (1993) Phys. Rev. E, 48, pp. 4263-4270 
504 |a Lu, X., On spatially homogeneous solutions of a modified Boltzmann equation for Fermi-Dirac particles (2001) J. Stat. Phys., 105 (1-2), pp. 353-388 
504 |a Planck, M., Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie (1917) Sitzungsber. Preuss. Akad. Wiss. (Berlin), pp. 324-341 
504 |a Risken, H., The Fokker-Planck Equation (1989) Springer Series in Synergetics, 18. , second ed. Springer-Verlag Berlin 
504 |a Rossani, A., Kaniadakis, G., A generalized quasi-classical Boltzmann equation (2000) Physica A, 277, pp. 349-358 
504 |a Sopik, J., Sire, C., Chavanis, P.-H., Dynamics of the Bose-Einstein condensation: Analogy with the collapse dynamics of a classical self-gravitating Brownian gas (2006) Phys. Rev. E, 74 
504 |a Staliunas, K., Gross-Pitaevskii model for nonzero temperature Bose-Einstein condensates (2006) Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (16), pp. 2713-2719 
504 |a Toscani, G., Finite time blow up in Kaniadakis-Quarati model of Bose-Einstein particles (2011) Comm. Partial Differential Equations, 37 (1), pp. 77-87 
504 |a Yano, R., On quantum Fokker-Planck equation (2015) J. Stat. Phys., 158 (1), pp. 231-247 
520 3 |a We show that solutions of the 2D Fokker-Planck equation for bosons are defined globally in time and converge to equilibrium, and this convergence is shown to be exponential for radially symmetric solutions. The main observation is that a variant of the Hopf-Cole transformation relates the 2D equation in radial coordinates to the usual linear Fokker-Planck equation. Hence, radially symmetric solutions can be computed analytically, and our results for general (non radially symmetric) solutions follow from comparison and entropy arguments. In order to show convergence to equilibrium we also prove a version of the Csiszár-Kullback inequality for the Bose-Einstein-Fokker-Planck entropy functional. © 2015 Elsevier Ltd. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Engineering and Physical Sciences Research Council, EPSRC, EP/K008404/1 
536 |a Detalles de la financiación: MTM2011-27739-C04-02 
536 |a Detalles de la financiación: Wolfson College, University of Oxford 
536 |a Detalles de la financiación: KineticCF 
536 |a Detalles de la financiación: MTM2014-52056-P 
536 |a Detalles de la financiación: Royal Society 
536 |a Detalles de la financiación: The authors would like to warmly thank the anonymous referee for useful comments. The authors acknowledge support from the Spanish project MTM2011-27739-C04-02. J. A. Cañizo acknowledges support from the Marie-Curie CIG project KineticCF and the Spanish project MTM2014-52056-P. J. A. Carrillo acknowledges support from the Royal Society through a Wolfson Research Merit Award and the Engineering and Physical Sciences Research Council (UK) grant number EP/K008404/1 . 
593 |a Departamento de Matemática Aplicada, Universidad de Granada, Granada, 18071, Spain 
593 |a Department of Mathematics, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom 
593 |a Institut de Mathématiques de Toulouse, UMRA 5219, Université de Toulouse, CNRS, Toulouse Cedex 9, F-31062, France 
593 |a Departamento de Matemática, Universidad de Buenos Aires, Argentina 
690 1 0 |a BOSE-EINSTEIN 
690 1 0 |a ENTROPY METHOD 
690 1 0 |a LONG-TIME ASYMPTOTICS 
690 1 0 |a BOSONS 
690 1 0 |a LINEAR TRANSFORMATIONS 
690 1 0 |a MATHEMATICAL TRANSFORMATIONS 
690 1 0 |a STATISTICAL MECHANICS 
690 1 0 |a TIMING JITTER 
690 1 0 |a ASYMPTOTIC BEHAVIORS 
690 1 0 |a BOSE-EINSTEIN 
690 1 0 |a CONVERGENCE TO EQUILIBRIUM 
690 1 0 |a ENTROPY FUNCTIONAL 
690 1 0 |a ENTROPY METHODS 
690 1 0 |a HOPF-COLE TRANSFORMATIONS 
690 1 0 |a LONG-TIME ASYMPTOTICS 
690 1 0 |a RADIALLY SYMMETRIC SOLUTION 
690 1 0 |a FOKKER PLANCK EQUATION 
700 1 |a Carrillo, J.A. 
700 1 |a Laurençot, P. 
700 1 |a Rosado, J. 
773 0 |d Elsevier Ltd, 2016  |g v. 137  |h pp. 291-305  |p Nonlinear Anal Theory Methods Appl  |x 0362546X  |w (AR-BaUEN)CENRE-254  |t Nonlinear Analysis, Theory, Methods and Applications 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84940068507&doi=10.1016%2fj.na.2015.07.030&partnerID=40&md5=2d8fed60f0da6442a19c51056089c569  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.na.2015.07.030  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0362546X_v137_n_p291_Canizo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v137_n_p291_Canizo  |y Registro en la Biblioteca Digital 
961 |a paper_0362546X_v137_n_p291_Canizo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 85439