Sodium Caseinate/Sunflower Oil Emulsion-Based Gels for Structuring Food

Protein gels have attired attention since they allow structuring foods with no trans or saturated fats. The effects of protein concentration and sucrose addition on gelation kinetics and on physical properties of sodium caseinate (NaCas)/sunflower oil emulsion-based gels were studied by two methods:...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Montes de Oca-Ávalos, J.M
Otros Autores: Huck-Iriart, C., Candal, R.J, Herrera, M.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer New York LLC 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12999caa a22010577a 4500
001 PAPER-24482
003 AR-BaUEN
005 20230518205620.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84957562768 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Montes de Oca-Ávalos, J.M. 
245 1 0 |a Sodium Caseinate/Sunflower Oil Emulsion-Based Gels for Structuring Food 
260 |b Springer New York LLC  |c 2016 
270 1 0 |m Herrera, M.L.; Instituto de Tecnología en Polímeros y Nanotecnología (ITPN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Facultad de Ingeniería, 1127 Las Heras, Argentina; email: mlidiaherrera@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Álvarez Cerimedo, M.S., Huck Iriart, C., Candal, R.J., Herrera, M.L., Stability of emulsions formulated with high concentrations of sodium caseinate and trehalose (2010) Food Reseach International, 43 (5), pp. 1482-1493 
504 |a Belyakova, L.E., Antipova, A.S., Semenova, M.G., Dickinson, E., Merino, L.M., Tsapkina, E.N., Effect of sucrose on molecular and interaction parameters of sodium caseinate in aqueous solution: relationship to protein gelation (2003) Colloids and Surfaces. B, Biointerfaces, 31 (1), pp. 31-46. , COI: 1:CAS:528:DC%2BD3sXms12jt7c%3D 
504 |a Blake, A.I., Co, E.D., Marangoni, A.G., Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity (2014) Journal of the American Oil Chemists’ Society, 91 (6), pp. 885-903. , COI: 1:CAS:528:DC%2BC2cXis1ajurY%3D 
504 |a Blake, A.I., Marangoni, A.G., Factors affecting the rheological properties of a structured cellular solid used as a fat mimetic (2015) Food Research International, 74, pp. 284-293. , COI: 1:CAS:528:DC%2BC2MXnslOntb4%3D 
504 |a Bordes, C., García, F., Frances, C., Biscans, B., Snabre, P., The on-line optical investigation of concentrated dispersions in precipitation and grinding processes (2001) Kona, 19, pp. 94-108. , COI: 1:CAS:528:DC%2BD38XksVSrt7w%3D 
504 |a Box, E.P., Hunter, W.G., Hunter, J.S., (1978) Statistics for experimenters, , Wiley, New York 
504 |a Cassiday, L., Big fat controversy: changing opinions about saturated fats (2015) International News on Fats, Oils, and Related Materials, 26, pp. 342-349 
504 |a Cavalcanti, L.P., Torriani, I.L., Plivelic, T.S., Oliveira, C.L.P., Kellermann, G., Neuenschwander, R., Two new sealed sample cells for small-angle X-ray scattering from macromolecules in solution and complex fluids using synchrotron radiation (2004) Review of Scientific Instruments, 75 (11), pp. 4541-4546. , COI: 1:CAS:528:DC%2BD2cXpslCnurs%3D 
504 |a Cerdeira, M., Palazolo, G.G., Candal, R.J., Herrera, M.L., Factors affecting initial retention of a microencapsulated sunflower seed oil/milk fat fraction blend (2007) Journal of American Oil Chemists’ Society, 84 (6), pp. 523-531. , COI: 1:CAS:528:DC%2BD2sXnsVOltrw%3D 
504 |a Chauvierre, C., Labarre, D., Couvreur, P., Vauthier, C., A new approach for the characterization of insoluble amphiphilic copolymers based on their emulsifying properties (2004) Colloid and Polymer Science, 282 (10), pp. 1097-1104. , COI: 1:CAS:528:DC%2BD2cXmtFOjtLw%3D 
504 |a Chen, J., Dickinson, E., On the temperature reversibility of the viscoelasticity of acid-induced sodium caseinate emulsion gels (2000) International Dairy Journal, 10 (8), pp. 541-549. , COI: 1:CAS:528:DC%2BD3MXhtlClsg%3D%3D 
504 |a Dickinson, E., Merino, L.M., Effect of sugars on the rheological properties of acid caseinate-stabilized emulsion gels (2002) Food Hydrocolloids, 16 (4), pp. 321-331. , COI: 1:CAS:528:DC%2BD38XjtlGhsLY%3D 
504 |a Dickinson, E., Eliot, C., Defining the conditions for heat-induced gelation of a caseinate-stabilized emulsion (2003) Colloids and Surfaces. B, Biointerfaces, 29 (2), pp. 89-97. , COI: 1:CAS:528:DC%2BD3sXjsVeqsrY%3D 
504 |a Dickinson, E., Structure formation in casein-based gels, foams, and emulsions (2006) Colloids and Surfaces A: Physicochemical Engineering Aspects, 288 (1-3), pp. 3-11. , COI: 1:CAS:528:DC%2BD28XotlWntbc%3D 
504 |a González Álvarez, J., Mangas Alonso, J.J., Díaz Llorente, D., Botas Velasco, C., Gutiérrez Álvarez, M.D., Arias Abrodo, P., Blanco Gomis, D., Multivariate characterization of milk fat fractions by gas chromatography (2013) Food and Bioprocess Technology, 6 (10), pp. 2651-2658 
504 |a Hammersley, A.P., Svernsson, O.S., Hanfland, M., Fitch, A.N., Häusermann, D., Two-dimensional detector software: from real detector to idealised image or two theta scan (1996) High Pressure Research, 14 (4), pp. 235-248 
504 |a Hartel, R.W., (2001) Crystallization in foods, , Aspen Publishers, New York 
504 |a Herrera, M.L., Rodríguez-Batiller, R.J., Rincón Cardona, J.A., Agudelo-Laverde, L.M., Martini, S., Candal, R.J., Effect of cooling rate and temperature cycles on polymorphic behavior of sunflower oil stearins for applications as trans-fat alternatives in foods (2015) Food and Bioprocess Technology, 8 (8), pp. 1779-1790. , COI: 1:CAS:528:DC%2BC2MXovVKrsr8%3D 
504 |a Huck Iriart, C., Pizones Ruiz-Henestrosa, V.M., Candal, R.J., Herrera, M.L., Effect of aqueous phase composition on stability of sodium caseinate/sunflower oil emulsions (2013) Food and Bioprocess Technology, 6 (9), pp. 2406-2418. , COI: 1:CAS:528:DC%2BC3sXht1yiurrM 
504 |a Huck Iriart, C., Rincón Cardona, J.A., Herrera, M.L., Stability of whey protein concentrate/sunflower oil emulsions as affected by sucrose and xanthan gum (2014) Food and Bioprocess Technology, 7 (4), pp. 2646-2656. , COI: 1:CAS:528:DC%2BC2cXhtlWmsb3F 
504 |a Kulmyrzaev, A., Canceliere, C., McClements, D.J., Influence of sucrose on cold gelation of heat-denatured whey protein isolate (2000) Journal of the Science of Food and Agriculture, 80 (9), pp. 1314-1318. , COI: 1:CAS:528:DC%2BD3cXks1Kqtbs%3D 
504 |a Lizarraga, M.S., Pan, L.G., Añon, M.C., Santiago, L.G., Stability of concentrated emulsions measured by optical and rheological methods. Effect of processing conditions—I. Whey protein concentrate (2008) Food Hydrocolloids, 22 (5), pp. 868-878. , COI: 1:CAS:528:DC%2BD1cXis1ajtLc%3D 
504 |a Mengual, O., Meunier, G., Cayré, I., Puech, K., Snabre, P., Turbiscan MA 2000: multiple light scattering measurements for concentrated emulsion and suspension instability analysis (1999) Talanta, 50 (2), pp. 445-456. , COI: 1:CAS:528:DyaK1MXlvFSrsrc%3D 
504 |a Oshiro, A., Da Silva, D.C., De Mello, J.C., De Moraes, V.W.R., Cavalcanti, L.P., Franco, M.K.K.D., Alkschbirs, M.I., De Araujo, D.R., Pluronics F-127/L-81 binary hydrogels as drug-delivery systems: influence of physicochemical aspects on release kinetics and cytotoxicity (2014) Langmuir, 30 (45), pp. 13689-13698. , COI: 1:CAS:528:DC%2BC2cXhvVWns73E 
504 |a Palazolo, G.G., Sorgentini, D.A., Wagner, J.R., Coalescence and flocculation in o/w emulsions of native and denatured whey soy proteins in comparison with soy protein isolates (2005) Food Hydrocolloids, 19 (3), pp. 595-604. , COI: 1:CAS:528:DC%2BD2MXmt1eitw%3D%3D 
504 |a Pan, L.G., Tomás, M.C., Añón, M.C., Effect of sunflower lecithins on the stability of water in oil (W/O) and oil in water (O/W) emulsions (2002) Journal of Surfactants and Detergents, 5 (2), pp. 135-143. , COI: 1:CAS:528:DC%2BD38XjtFKrur4%3D 
504 |a Perullini, M., Jobbágy, M., Bilmes, S.A., Torriani, I.L., Candal, R., Effect of synthesis conditions on the microstructure of TEOS derived silica hydrogels synthesized by the alcohol-free sol–gel route (2011) Journal of Sol-Gel Science and Technology, 59 (1), pp. 174-180. , COI: 1:CAS:528:DC%2BC3MXosFaitL0%3D 
504 |a Relkin, P., Sourdet, S., Factors affecting fat droplet aggregation in whipped frozen protein-stabilized emulsions (2005) Food Hydrocolloids, 19 (3), pp. 503-511. , COI: 1:CAS:528:DC%2BD2MXmt1aqsA%3D%3D 
504 |a Tarancón, P., Salvador, A., Sanz, T., Sunflower oil–water–cellulose ether emulsions as trans-fatty acid-free fat replacers in biscuits: texture and acceptability study (2013) Food and Bioprocess Technology, 6 (9), pp. 2389-2398 
504 |a Thanasukarn, P., Pongsawatmanit, R., McClements, D.J., Utilization of layer-by-layer interfacial deposition technique to improve freeze-thaw stability of oil-in-water emulsions (2006) Food Research International, 39 (6), pp. 721-729. , COI: 1:CAS:528:DC%2BD28Xjs1Gru7o%3D 
520 3 |a Protein gels have attired attention since they allow structuring foods with no trans or saturated fats. The effects of protein concentration and sucrose addition on gelation kinetics and on physical properties of sodium caseinate (NaCas)/sunflower oil emulsion-based gels were studied by two methods: a new application of backscattering of light (BS) using a Turbiscan equipment and by dynamic oscillatory rheology. Structure of gels was also described by confocal laser scanning microscopy (CLSM) and small angle X-ray scattering (SAXS). Tgel values decreased with increasing sucrose or NaCas concentration. BS method sensed early changes in structure, while rheological measurements were less sensitive to those changes. However, tendencies found by rheological measurements were the same as the ones found by BS experiments. CLSM images of gels formed from emulsions containing high sucrose and protein concentrations had big oil droplets that were not present in initial emulsions. Gels with sucrose concentrations between 15 and 30 wt/wt% released oil. SAXS patterns showed that NaCas nanoaggregate sizes in the aqueous phase were smaller with increasing sucrose concentration. Polar groups of protein interacted with sucrose, and therefore, interactions among protein molecules diminished. As a result of weaker protein molecule interactions, nanoaggregates were smaller. However, this effect was beneficial. In the macroscale, rheological properties and visual appearance of gels were improved. The gel formulated with 5 wt/wt% NaCas and 10 wt/wt% sucrose had a smooth surface and was stable to syneresis and oil release. This formulation was a good alternative to trans fat. © 2016, Springer Science+Business Media New York.  |l eng 
593 |a Instituto de Tecnología en Polímeros y Nanotecnología (ITPN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Facultad de Ingeniería, 1127 Las Heras, Buenos Aires, Argentina 
593 |a Instituto de Química Inorgánica, Medio Ambiente y Energía (INQUIMAE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), 1428 Ciudad Universitaria, Buenos Aires, Argentina 
593 |a Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina 
690 1 0 |a CASEINATE GELS 
690 1 0 |a CONFOCAL LASER SCANNING MICROSCOPY 
690 1 0 |a RHEOLOGY 
690 1 0 |a SMALL ANGLE X-RAY SCATTERING 
690 1 0 |a TURBISCAN 
690 1 0 |a CONFOCAL MICROSCOPY 
690 1 0 |a ELASTICITY 
690 1 0 |a EMULSIFICATION 
690 1 0 |a EMULSIONS 
690 1 0 |a GELATION 
690 1 0 |a LASER APPLICATIONS 
690 1 0 |a MOLECULES 
690 1 0 |a OILS AND FATS 
690 1 0 |a PROTEINS 
690 1 0 |a RHEOLOGY 
690 1 0 |a SODIUM 
690 1 0 |a SODIUM COMPOUNDS 
690 1 0 |a SUGAR (SUCROSE) 
690 1 0 |a SURFACE ANALYSIS 
690 1 0 |a X RAY SCATTERING 
690 1 0 |a CASEINATE GELS 
690 1 0 |a CONFOCAL LASER SCANNING MICROSCOPY 
690 1 0 |a OSCILLATORY RHEOLOGIES 
690 1 0 |a PROTEIN CONCENTRATIONS 
690 1 0 |a RHEOLOGICAL MEASUREMENTS 
690 1 0 |a RHEOLOGICAL PROPERTY 
690 1 0 |a SUCROSE CONCENTRATION 
690 1 0 |a TURBISCAN 
690 1 0 |a GELS 
700 1 |a Huck-Iriart, C. 
700 1 |a Candal, R.J. 
700 1 |a Herrera, M.L. 
773 0 |d Springer New York LLC, 2016  |g v. 9  |h pp. 981-992  |k n. 6  |p Food. Bioprocess Technol.  |x 19355130  |t Food and Bioprocess Technology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84957562768&doi=10.1007%2fs11947-016-1687-0&partnerID=40&md5=30236b34c766ebac2ca3f6a6a672ec1a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11947-016-1687-0  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19355130_v9_n6_p981_MontesdeOcaAvalos  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19355130_v9_n6_p981_MontesdeOcaAvalos  |y Registro en la Biblioteca Digital 
961 |a paper_19355130_v9_n6_p981_MontesdeOcaAvalos  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 85435